ENTIRE SOLUTIONS IN BISTABLE REACTION-DIFFUSION EQUATIONS WITH NONLOCAL DELAYED NONLINEARITY

ZHI-CHENG WANG, WAN-TONG LI, AND SHIGUI RUAN

Abstract. This paper is concerned with entire solutions for bistable reaction-diffusion equations with nonlocal delay in one-dimensional spatial domain. Here the entire solutions are defined in the whole space and for all time $t \in \mathbb{R}$. Assuming that the equation has an increasing traveling wave solution with nonzero wave speed and using the comparison argument, we prove the existence of entire solutions which behave as two traveling wave solutions coming from both ends of the $x$-axis and annihilating at a finite time. Furthermore, we show that such an entire solution is unique up to space-time translations and is Liapunov stable. A key idea is to characterize the asymptotic behavior of the solutions as $t \to -\infty$ in terms of appropriate subsolutions and supersolutions.

In order to illustrate our main results, two models of reaction-diffusion equations with nonlocal delay arising from mathematical biology are considered.

1. Introduction and main results

In this paper, we are concerned with entire solutions of the bistable reaction-diffusion equation with nonlocal delay of the form

$$\frac{\partial u}{\partial t} = d\Delta u + g\left(u(x,t), \int_{-\infty}^{0} \int_{-\infty}^{\infty} h(y,-s) S(u(x+y,t+s)) \, dy \, ds\right),$$

where $x \in \mathbb{R}$, $t > 0$, $d > 0$, $\Delta$ is the Laplacian operator on $\mathbb{R}$, $\tau > 0$ is a given constant, and $h \in L^1(\mathbb{R} \times [0, \tau])$ is a nonnegative kernel satisfying

- (H1) $\int_{0}^{\tau} \int_{-\infty}^{\infty} h(y,s) \, dy \, ds = 1$ [normalization];
- (H2) $h(x,t) = h(-x,t)$ for $(x,t) \in \mathbb{R} \times [0, \tau]$ [spatial symmetry];
- (H3) $\int_{0}^{\tau} \int_{-\infty}^{\infty} e^{\lambda y} h(y,s) \, dy \, ds < \infty$ for $\lambda \geq 0$ [convergence].

Received by the editors May 10, 2007.

2000 Mathematics Subject Classification. Primary 35K57, 35R10; Secondary 35B40, 34K30, 58D25.

Key words and phrases. Entire solution, traveling wave solution, reaction-diffusion equation, nonlocal delay, bistable nonlinearity.

The research of the first author was partially supported by NSF of Gansu Province of China (0710RJZA020).

The second author is the corresponding author and was partially supported by NSFC (10571078) and NSF of Gansu Province of China (3ZS061-A25-001).

The research of the third author was partially supported by NSF grants DMS-0412047 and DMS-0715772.

©2008 American Mathematical Society
Reverts to public domain 28 years from publication
For the sake of convenience, we set
\[
(h * v)(x, t) = \int_{-\infty}^{0} \int_{-\infty}^{\infty} h(y, -s) v(x + y, t + s) \, dy \, ds
\]
for any \( v \in C(\mathbb{R}^2) \). Then the spatial symmetry condition (H2) implies that
\[
(h * v)(x, t) = \int_{0}^{\infty} \int_{-\infty}^{\infty} h(y, s) v(x - y, t - s) \, dy \, ds.
\]

The nonlinearity is induced by the functions \( g \) and \( S \), which satisfy the following assumptions:

(F1) \( g \in C^2([0, 1] \times [S(0), S(1)], \mathbb{R}) \) and \( \partial_2 g(u, v) \geq 0 \) for \( (u, v) \in [0, 1] \times [S(0), S(1)]; \ S \in C^2([0, 1], \mathbb{R}) \) and \( S'(u) \geq 0 \) for \( u \in [0, 1] \).

(F2) \( g(0, S(0)) = g(1, S(1)) = 0, \ \partial_1 g(0, S(0)) + \partial_2 g(0, S(0)) S'(0) < 0, \) and \( \partial_1 g(1, S(1)) + \partial_2 g(1, S(1)) S'(1) < 0 \).

We will assume that (1.1) has an increasing traveling wave solution with the wave speed \( c \). Hereafter, a traveling wave solution of (1.1) always refers to a pair \( (\phi, c) \), where \( \phi = \phi(\xi) \) is a function in \( \mathbb{R} \) and \( c \) is a constant, such that \( u(x, t) := \phi(x + ct) \) is a solution of (1.1) and
\[
\lim_{\xi \to -\infty} \phi(\xi) = 0, \quad \lim_{\xi \to +\infty} \phi(\xi) = 1.
\]

We call \( c \) the traveling wave speed and \( \phi \) the profile of the wave front. These assumptions about the existence of traveling wave solutions have been justified for a number of important special cases of (1.1) and some more general cases. For example, if \( h(x, t) = \delta(t)\delta(x) \), \( \delta(\cdot) \) is the Dirac delta function, then (1.1) reduces to the local equation without delay
\[
\frac{\partial u}{\partial t} = d \Delta u + g(u, S(u)), \quad x \in \mathbb{R}, \ t > 0.
\]

There are many well-known results on traveling wave solutions of (1.3) with bistable nonlinearity; see Fife and McLeod [12, 13], Volpert et al. [39], etc. For the related results on convergency of solutions of (1.3), one can refer to Martin and Smith [27] and Poláčik [31, 32].

If \( S(u) = u \) and \( h(x, t) = \delta(t - \tau)\delta(x) \), then (1.1) reduces to the local equation with a discrete delay
\[
\frac{\partial u}{\partial t} = d \Delta u + g(u(x, t), u(x, t - \tau)), \quad x \in \mathbb{R}, \ t > 0, \ \tau > 0.
\]

For Huxley nonlinearity, Schaffer [36] showed that there is exactly one wave speed \( c \) such that (1.3) has a nontrivial strictly increasing traveling wave solution. Moreover, he gave the asymptotic behavior of such a traveling wave solution at infinity. Smith and Zhao [35] further proved the global asymptotic stability, Liapunov stability and uniqueness of traveling wave solutions of (1.4) with a bistable nonlinear term.

If \( h(x, t) = \delta(t)J(x) \), then (1.1) reduces to the nonlocal equation
\[
\frac{\partial u}{\partial t} = d \Delta u + g\left(u(x, t), \int_{-\infty}^{\infty} J(x - y) S(u(y, t)) \, dy\right), \quad x \in \mathbb{R}, \ t > 0.
\]

Chen [7] proved the existence, uniqueness and global asymptotic stability of traveling wave solutions of (1.5) by developing the so-called squeezing technique.
If \( g(u, v) = -\alpha u + v \), \( S(u) = b(u) \) and \( h(x, t) = \delta(t - \tau)J(x) \), then (1.1) reduces to the nonlocal equation

\[
\frac{\partial u}{\partial t} = d \Delta u - \alpha u(x, t) + \int_{-\infty}^{\infty} J(x - y) b(u(y, t - \tau)) \, dy, \quad x \in \mathbb{R}, \, t > 0, \, \tau > 0,
\]

which was studied by Ma and Wu [26]. Under the bistable assumption, they proved the existence, uniqueness and global asymptotic stability of traveling wave solutions of (1.1).

Recently, Wang et al. [42] studied the reaction advection diffusion equation with nonlocal delay and a bistable nonlinear term of the form

\[
\frac{\partial u}{\partial t} = d \Delta u + B \frac{\partial u}{\partial x} + g(u(x, t), \left( \int_{-\tau}^{0} \int_{-\infty}^{\infty} h(x - y, -s) S(u(y, t+s)) \, dy \, ds \right)(x, t)),
\]

and established the existence, uniqueness and global asymptotic stability of traveling wave solutions of (1.7).

Since time delay and nonlocality play very important roles in biological and epidemiological models (see Britton [5] and Ruan [34]), they have a crucial effect on the dynamics of the equation (1.1); see Gourley et al. [19], Li et al. [23, 24], Wang and Li [40] and Wu [45]. There has been significant progress in the study of traveling wave solutions for both bistable and monostable equations; see, for example, Ai [1], Ashwin et al. [2], Billingham [4], Faria et al. [14, 15], Gourley and Kuang [17, 18], Liang and Wu [29], Ou and Wu [29], Ruan and Xiao [35], Wang et al. [11, 43], Wu and Zou [50], Zou [48], and the references cited therein.

On the other hand, it has been observed that traveling wave solutions are special examples of the so-called entire solutions that are defined in the whole space and for all time \( t \in \mathbb{R} \). In particular, Chen and Guo [8], Fukao et al. [10], Guo and Morita [20], Hamel and Nadirashvili [21, 22], Morita and Ninomiya [28] and Yagisita [47] have shown that the study of entire solutions is essential for a full understanding of the transient dynamics and the structure of the global attractors. These studies showed the great diversity of different types of entire solutions of reaction-diffusion equations in the absence of time delay. By constructing a global invariant manifold with asymptotic stability, Yagisita [47] proved that, for the bistable equation, there exists an entire solution which behaves as two traveling wave solutions coming from both sides of the \( x \)-axis and annihilating in a finite time. The stability and uniqueness of entire solutions were also considered. Yagisita’s argument was substantially simplified by Fukao et al. [10], and the existence of an entire solution emanating from the unstable standing pulse solution of (1.1) was also obtained. For the Fisher-KPP equation, Hamel and Nadirashvili [21] established five-dimensional, four-dimensional and three-dimensional manifolds of entire solutions, respectively, by combining two traveling wave solutions with different speeds and coming from both sides of the real axis and some spatially independent solution. In [22], Hamel and Nadirashvili further considered the existence of entire solutions of the Fisher-KPP equation in high-dimensional spaces and obtained an amazingly rich class of entire solutions. Chen and Guo [8] and Guo and Morita [20] developed a unified approach based on the comparison principle to find entire solutions for both the bistable and monostable cases. Furthermore, Chen et al. [9] considered entire solutions of reaction-diffusion equations with bistable nonlinearities for the case...
Assume that equation (1.1) holds. Now we state our main results in this paper. Of such an entire solution are established in Section 5. The existence of the desired entire solutions by comparison and the continuity of the semiflow, which is inspired by Chen and Guo [8] and Guo and Morita [20] and are completely different from these observed in [8, 16, 20, 21, 22, 47].

However, the above mentioned results are only concerned with entire solutions of (1.1) that are Liapunov stable. Furthermore, assume that equation (1.1) defined for all \((x, t) \in \mathbb{R}^2\) such that \(0 < \Phi(x, t) < 1\), \(\frac{\partial \Phi}{\partial t} > 0\) and

\[
\lim_{t \to -\infty} \left\{ \sup_{x \geq 0} |\Phi(x, t) - \phi(x + ct + \theta_1)| + \sup_{x \leq 0} |\Phi(x, t) - \phi(-x + ct + \theta_2)| \right\} = 0.
\]

In particular, the entire solution is Liapunov stable. Furthermore, assume that \(h(x, t) = J(x)\delta(t-\tau)\) and \(\Phi(x, t)\) is another solution of (1.1) satisfying \(0 < \Phi(x, t) < 1\) and

\[
(U^+) \text{ there exist constants } a > 0 \text{ and } T_0 \in \mathbb{R}, \text{ and functions } l(\cdot) \text{ and } r(\cdot) \text{ such that for all } t \leq T_0 \text{ and } s \in [-\tau, 0],
\]

\[
\left\{ \begin{array}{l}
\Phi(x, t + s) \geq \beta_0 \quad \forall \ x \in (-\infty, l(t)] \cup [r(t), \infty),
\Phi(x, t + s) \leq \alpha_0 \quad \forall \ x \in \min\{l(t) + a, r(t) - a\}, \max\{l(t) + a, r(t) - a\},
\end{array} \right.
\]

where \(\alpha_0\) and \(\beta_0\) are constants satisfying

\[
g(u, S(u)) < 0 \text{ in } u \in (0, \alpha_0] \text{ and } g(u, S(u)) > 0 \text{ in } u \in [\beta_0, 1).
\]

Then \(\Phi(x, t)\) is also Liapunov stable, and there exist \(x_0 \in \mathbb{R}\) and \(t_0 \in \mathbb{R}\) such that

\[
\Phi(x, t) = \Phi(x + x_0, t + t_0) \quad \text{ for any } (x, t) \in \mathbb{R}^2.
\]

**Theorem 1.2.** Assume that equation (1.1) admits an increasing traveling wave solution \(\phi\) with wave speed \(c > 0\). Then for any given constants \(\theta_1\) and \(\theta_2\) there exists a solution \(\Phi(x, t)\) of (1.1) defined for all \((x, t) \in \mathbb{R}^2\) such that \(0 < \Phi(x, t) < 1\), \(\frac{\partial \Phi}{\partial t} < 0\) and

\[
\lim_{t \to -\infty} \left\{ \sup_{x \geq 0} |\Phi(x, t) - \phi(-x + ct + \theta_1)| + \sup_{x \leq 0} |\Phi(x, t) - \phi(x + ct + \theta_2)| \right\} = 0.
\]
In particular, the entire solution is Liapunov stable. Furthermore, assume that \( h(x,t) = J(x) \delta(t - \tau) \) and \( \Phi(x,t) \) is another solution of (1.1) satisfying \( 0 < \Phi(x,t) < 1 \) and

\[
(U^-) \text{ there exist constants } a > 0 \text{ and } T_0 \in \mathbb{R}, \text{ and functions } l(\cdot) \text{ and } r(\cdot) \text{ such that for all } t \leq T_0 \text{ and } s \in [-\tau,0],
\]

\[
\begin{align*}
\Phi(x,t+s) & \geq \beta_0 \quad \forall x \in [\min \{ l(t) + a, r(t) - a \}, \max \{ l(t) + a, r(t) - a \}], \\
\Phi(x,t+s) & \leq \alpha_0 \quad \forall x \in (-\infty, l(t)] \cup [r(t), \infty),
\end{align*}
\]

where \( \alpha_0 \) and \( \beta_0 \) are constants satisfying

\[
g(u,S(u)) < 0 \text{ in } u \in (0, \alpha_0] \text{ and } g(u,S(u)) > 0 \text{ in } u \in [\beta_0, 1).
\]

Then \( \Phi(x,t) \) is also Liapunov stable, and there exist \( x_0 \in \mathbb{R} \) and \( t_0 \in \mathbb{R} \) such that

\[
\Phi(x,t) = \Phi(x + x_0, t + t_0) \quad \text{for any } (x,t) \in \mathbb{R}^2.
\]

Remark 1.3. If there exists \( \tau_0 \in (0,\tau) \) such that \( h(x,t) \) satisfies \( \int_{\tau_0}^{\tau} \int_{-\infty}^{\infty} h(x,t) dx dt = 1 \), that is, \( \int_{0}^{\tau_0} \int_{-\infty}^{\infty} h(x,t) dx dt = 0 \), then \( \Phi(x,t) \) in Theorems 1.1 and 1.2 is still a translation of \( \Phi \), respectively. See Remark 5.9.

Remark 1.4. For the case \( h(x,t) = \delta(x) \delta(t) \), Theorem 1.1 concludes Theorem 1.1(i) of Fukao et al. [10], Theorem 1.1 of Guo and Morita [20] and Theorem 1.1 of Yagisita [17]. Theorem 1.2 concludes Theorems 1 and 2 of Chen and Guo [8].

In the following, we give two applications of Theorems 1.1 and 1.2.

**Example 1.5.** Consider the typical Huxley nonlinearity

\[
g(u,v) = \begin{cases} u(1-u)(v-a) & \text{for } 0 \leq u \leq 1, v \in \mathbb{R}, \\ u(1-u)(u-a) & \text{otherwise} \end{cases}
\]

with \( a \in (0,1) \), \( a \neq \frac{1}{2} \). This is a special case of equation (1.1) with \( S(u) = u \) and \( h(x,t) = \delta(x) \delta(t-\tau) \), \( \tau \geq 0 \). Following Theorem 3.13 of Schaaf [36] p. 603, we know that (1.1) has an increasing traveling wave solution with speed \( c > 0 \) if \( a \in (0,\frac{1}{2}) \) and an increasing traveling wave solution with speed \( c < 0 \) if \( a \in (\frac{1}{2},1) \). Thus, Theorems 1.1 and 1.2 hold for (1.1) with the Huxley nonlinearity when \( a \in (0,\frac{1}{2}) \) and \( a \in (\frac{1}{2},1) \), respectively.

**Example 1.6.** Al-Omari and Gourley [3] derived a nonlocal reaction-diffusion model for a single population with stage structure and distributed maturation delay, namely,

\[
\begin{align*}
\frac{\partial u_i}{\partial t} &= D_i \Delta u_i + b(u_i(x,t)) - \gamma u_i(x,t) \\
&\quad - \int_{0}^{T} \int_{\Omega} G(x,y,s) f(s) e^{-\gamma b(u_i(y,t-s))} dy ds, \\
\frac{\partial u_m}{\partial t} &= D_m \Delta u_m - d(u_m(x,t)) \\
&\quad + \int_{0}^{T} \int_{\Omega} G(x,y,s) f(s) e^{-\gamma b(u_m(y,t-s))} dy ds,
\end{align*}
\]

(1.10)
where $\int_0^\tau f(s)\,ds = 1$, $\Omega \subset \mathbb{R}^N$ is open and bounded, $G(x, y, t)$ is the solution subject to the homogeneous Neumann boundary condition of
\[
\frac{\partial G}{\partial t} = D_i \Delta_x G, \quad G(x, y, 0) = \delta(x - y).
\]
If the bounded domain $\Omega$ is replaced by the whole real line $(-\infty, \infty)$, then the second equation of (1.10) reduces to
\[
\frac{\partial u_m}{\partial t} = D_m \Delta u_m - d(u_m(x, t)) + \int_0^\tau \int_{-\infty}^\infty \frac{1}{\sqrt{4\pi D_is}} e^{-\gamma s} b(u_m(y, t-s))\,dy\,ds.
\]  
(1.11)

Ma and Wu [26] considered a special case (1.6) of (1.11). In [42], we showed that (1.11) has an increasing traveling wave solution under the following conditions:

(C1) There exist $0 \leq a_1 < a_2 < a_3$ such that $\varepsilon b(a_i) - d(a_i) = 0$, $i = 1, 2, 3$; $\varepsilon b(u) - d(u) < 0$ for $u \in (a_1, a_2)$; $\varepsilon b(u) - d(u) > 0$ for $u \in (a_2, a_3)$, where $\varepsilon = \int_0^\tau f(s) e^{-\gamma s}\,ds$.

(C2) $b(\cdot), d(\cdot) \in C^2([a_1, a_3]), b'(\cdot) \geq 0$, $\varepsilon b'(a_1) < d'(a_1)$, $\varepsilon b'(a_2) > d'(a_2)$, $\varepsilon b'(a_3) < d'(a_3)$.

Assume that (C1) and (C2) hold. If the wave speed of the traveling wave solution of (1.11) is nonzero, then the existence and stability of the entire solutions of (1.11) follow from Theorems 1.1 and 1.2. If there exists $\tau_0 \in (0, \tau)$ such that $\int_{\tau_0}^\tau f(s)\,ds = 1$, which contains the case $f(s) = \delta(t - \tau)$, then the uniqueness of the entire solutions in Theorems 1.1 and 1.2 and Remark 1.3 are valid for (1.11).

2. Preliminaries

In this section, we state some definitions and establish the comparison theorem for (1.1), which is needed in the sequel.

Let $X = BUC(\mathbb{R})$ be the Banach space of all bounded and uniformly continuous functions from $\mathbb{R}$ into $\mathbb{R}$ with the usual supremum norm. Let $X^+ = \{ \varphi \in X : \varphi(x) \geq 0, x \in \mathbb{R} \}$. It is easy to see that $X^+$ is a closed cone of $X$ and $X$ is a Banach lattice under the partial ordering induced by $X^+$. By [10] Theorem 1.5, it then follows that the $X$–realization of $d\Delta_X$ generates a strongly continuous analytic semigroup $T(t)$ on $X$ and $T(t)X^+ \subset X^+$, $t \geq 0$. Moreover, we have
\[
T(t) \varphi(x) = \frac{1}{\sqrt{4\pi dt}} \int_{-\infty}^\infty \exp \left( -\frac{(x-y)^2}{4dt} \right) \varphi(y)\,dy,
\]
\[
x \in \mathbb{R}, \quad t > 0, \quad \varphi(\cdot) \in X.
\]

Let $C = C([-\tau, 0], X)$ be the Banach space of continuous functions from $[-\tau, 0]$ into $X$ with the supremum norm and let $C^+ = \{ \varphi \in C : \varphi(s) \in X^+, s \in [-\tau, 0] \}$. Then $C^+$ is a positive cone of $C$. As usual, we identify an element $\varphi \in C$ as a function from $\mathbb{R} \times [-\tau, 0]$ into $\mathbb{R}$ by $\varphi(x, s) = \varphi(s)(x)$. For any continuous function $w : [-\tau, b) \rightarrow X, b > 0$, we define $w_t \in C, t \in [0, b)$, by $w_t(s) = w(t + s), s \in [-\tau, 0]$. Then $t \mapsto w_t$ is a continuous function from $[0, b)$ to $C$. For any $\varphi \in C_{[0, b]} = \{ \varphi \in C : \varphi(x, s) \in [0, 1], x \in \mathbb{R}, s \in [-\tau, 0] \}$, define
\[
F(\varphi)(x) = g \left( \varphi(x, 0), \int_{-\tau}^0 \int_{-\infty}^\infty h(x-y,-s) S(\varphi(y,s))\,dy\,ds \right).
\]
By the global Lipschitz continuity of \( g(\cdot, \cdot) \) on \([0, 1] \times [S(0), S(1)]\) and \( S(\cdot) \) on \([0, 1]\), we can verify that \( F(\varphi) \in X \) and \( F : C_{[0,1]} \rightarrow X \) is globally Lipschitz continuous.  

**Definition 2.1.** A continuous function \( v : [-\tau, b) \rightarrow X, b > 0 \), is called a supersolution (subsolution) of \((1.1)\) on \([0, b)\) if and only if 

\[
(2.2) \quad v(t) \geq (\leq) T(t-s) v(s) + \int_s^t T(t-r) F(v_r) \, dr
\]

for all \( 0 \leq s < t < b \). If \( v \) is both a supersolution and a subsolution on \([0, b)\), then it is said to be a mild solution of \((1.1)\).  

**Definition 2.2.** A function \( v : (-\infty, T) \rightarrow X, T \in \mathbb{R} \), is called a supersolution (subsolution) of \((1.1)\) on \((-\infty, T)\) if and only if for any \( T' < T \), \( w(t) : [-\tau, T-T') \rightarrow X \) defined by \( w(t) = v(t+T') \) for \( t \in [-\tau, T-T') \) is a supersolution (subsolution) of \((1.1)\) on \([0, T-T')\).  

In [42][43], we have established the following existence and comparison result.  

**Theorem 2.3.** For any \( \varphi \in C_{[0,1]}, \) \((1.1)\) has a unique mild solution \( u(x,t;\varphi) \) on \([0, \infty)\) which is a classical solution to \((1.1)\) for \((x,t) \in \mathbb{R} \times (\tau, \infty) \). Furthermore, for any pair of supersolutions \( \varphi^+(x,t) \) and subsolutions \( \varphi^-(x,t) \) of \((1.1)\) on \([0, b)\) with \( 0 \leq \varphi^+(x,t), \varphi^-(x,t) \leq 1 \) for \( x \in \mathbb{R}, t \in [-\tau, b), \) and \( \varphi^+(x,s) \geq \varphi^-(x,s) \) for \( x \in \mathbb{R}, s \in [-\tau, 0], 0 < b \leq \infty, \) we have \( \varphi^+(x,t) \geq \varphi^-(x,t) \) for \( x \in \mathbb{R}, 0 \leq t < b \) and 

\[
\varphi^+(x,t) - \varphi^-(x,t) \geq \Theta(J,t-t_0) \int_{x_0}^{x+1} (\varphi^+(y,t_0) - \varphi^-(y,t_0)) \, dy
\]

for any \( J \geq 0, x \) and \( z \in \mathbb{R} \) with \( |x-z| \leq J, \) and \( t > t_0 \geq 0, \) where 

\[
\Theta(J, t) = \frac{1}{\sqrt{4\pi t}} \exp \left( -\frac{L_1 t - (J + 1)^2}{4dt} \right), \quad J \geq 0, \quad t > 0,
\]

and \( L_1 = \max_{(u,v) \in [0,1] \times [S(0), S(1)]} |\partial g(u,v)| \). In particular, if there exists \( x_0 \in \mathbb{R} \) such that \( \varphi^+(x_0,0) > \varphi^-(x_0,0) \), then \( \varphi^+(x,t) > \varphi^-(x,t) \) for any \( x \in \mathbb{R} \) and \( t > 0 \).  

**Remark 2.4.** For \( \tau = 0 \), that is, for the equation without delay, Theorem 2.3 still holds.  

3. **ASYMPTOTIC BEHAVIOR OF TRAVELING WAVE SOLUTIONS**  

In this section, we will discuss the asymptotic behavior of traveling wave solutions of \((1.1)\) at infinity. Define a function 

\[
G(\lambda) = \int_0^T \int_{-\infty}^{\infty} h(y,s) e^{-\lambda(y+cs)} \, dyds
\]

\[
= \int_0^T \int_0^{\infty} h(y,s) \left( e^{\lambda y} + e^{-\lambda y} \right) e^{-\lambda cs} \, dyds, \quad \lambda \in \mathbb{C},
\]

where \( c \in \mathbb{R} \) is a constant. Since \( e^{-i\lambda c} \) and \( e^{-i\lambda c} \) are bounded, \( G(\lambda) \) is well defined in \( \mathbb{C} \). Obviously, \( G(0) = 1 \).  

**Lemma 3.1.** For \( \lambda \in \mathbb{R}, \) \( G(\lambda) \) satisfies 

\[
\frac{\partial}{\partial \lambda} G(\lambda) = \int_0^T \int_0^{\infty} h(y,s) \left[ (y - cs)e^{\lambda(y-cs)} - (y + cs)e^{-\lambda(y+cs)} \right] \, dyds
\]
and
\[
\frac{\partial^2}{\partial \lambda^2} G(\lambda) = \int_0^\tau \int_0^\infty h(y,s) \left[ (y-cs)^2 e^{\lambda(y-cs)} + (y+cs)^2 e^{-\lambda(y+cs)} \right] dyds > 0.
\]

The lemma can be proved by condition (H3) and Lebesgue’s dominated convergence theorem, so its proof is omitted.

Define two complex functions \(\Delta_0(\lambda)\) and \(\Delta_1(\lambda)\) by
\[
\Delta_0(\lambda) = d\lambda^2 - c\lambda + \partial_1 g(0, S(0)) + \partial_2 g(0, S(0)) S'(0) G(\lambda),
\]
\[
\Delta_1(\lambda) = d\lambda^2 - c\lambda + \partial_1 g(1, S(1)) + \partial_2 g(1, S(1)) S'(1) G(\lambda),
\]
where \(\lambda \in \mathbb{C}\). Then it is easy to see that the following result holds.

**Lemma 3.2.** The equation \(\Delta_i(\lambda) = 0\) has two real roots \(\lambda_{i1} < 0\) and \(\lambda_{i2} > 0\) such that
\[
\Delta_i(\lambda) = \begin{cases} 
> 0 & \text{for } \lambda < \lambda_{i1}, \\
< 0 & \text{for } \lambda \in (\lambda_{i1}, \lambda_{i2}), \\
> 0 & \text{for } \lambda > \lambda_{i2},
\end{cases}
\]
where \(i = 0, 1\).

In the following, we investigate the asymptotic behavior of traveling wave solutions at infinity. Our method is similar to that of Carr and Chmaj [6] which has been used by Wang et al. [43] (see also Diekmann and Kaper [11]). We first provide a technical lemma about the asymptotic behavior of a positive decreasing function, which is given by Carr and Chmaj [6] Proposition 2.3 and is important to prove our results.

**Lemma 3.3.** Let \(\ell(\lambda) = \int_0^\infty u(\xi) e^{-\lambda\xi} d\xi\) with \(u(\xi)\) being a positive decreasing function. Assume that \(\ell\) has the representation
\[
\ell(\lambda) = \frac{E(\lambda)}{(\lambda + \alpha)^{k+1}},
\]
where \(k > -1\) and \(E\) is analytic in the strip \(-\alpha \leq \text{Re}\lambda < 0\). Then
\[
\lim_{\xi \to +\infty} \frac{u(\xi)}{\xi^k e^{-\alpha\xi}} = \frac{E(-\alpha)}{\Gamma(\alpha + 1)}.
\]

**Lemma 3.4.** Assume further that \(\tilde{\phi}(t)\) is an increasing traveling wave solution of (1.1) satisfying \(0 < \tilde{\phi}(t) < 1\) and (1.2). Then \(\tilde{\phi}'(t) > 0\) and \(\lim_{t \to \pm\infty} \tilde{\phi}'(t) = 0\).

The proof of Lemma 3.4 follows from Theorem 2.3 and a similar argument to Lemma 2.5 of Smith and Zhao [38].

**Theorem 3.5.** Assume that \(\phi(t)\) is an increasing traveling wave solution of (1.1) satisfying (1.2) with wave speed \(c \in \mathbb{R}\). Then
\[
(i) \lim_{t \to -\infty} e^{-\lambda_{i1}^* t} \phi(t) = a_{02}, \quad \lim_{t \to -\infty} e^{-\lambda_{i2}^* t} (h \ast \phi)(t) = a_{02} G(\lambda_{i2}) \quad \text{and} \quad \lim_{t \to -\infty} e^{-\lambda_{i2}^* t} \phi'(t) = \lambda_{i2} a_{02},
\]
where
\[
(h \ast \phi)(t) = \int_0^\tau \int_{t-CS}^{t-CS} h(y,s) \phi(t - y - cs) dyds.
\]
and \(a_{02} > 0\) is a constant.
\[
(iii) \lim_{t \to -\infty} e^{-\lambda_{i1}^* t} (1 - \phi(t)) = a_{11}, \quad \lim_{t \to -\infty} e^{-\lambda_{i1}^* (1 - (h \ast \phi)(t))} = a_{11} G(\lambda_{i1}) \quad \text{and} \quad \lim_{t \to -\infty} e^{-\lambda_{i1}^* \phi'(t)} = -\lambda_{i1} a_{11}, \quad \text{where} \quad a_{11} > 0 \quad \text{is a constant.}
\]
Proof. Let \( U(t) = 1 - \phi(t) \) and define \( V(t) = \int_0^t \int_{-\infty}^{+\infty} h(z, r) U(t - cr - z) \, dz \, dr. \) Since \( U(t) \) satisfies \(-dU''(t) + cU'(t) = -g(1 - U(t), (h \ast S(1 - U))(t)) \), then

\[
U(t) = \frac{1}{d(\lambda_2 - \lambda_1)} \left[ \int_{-\infty}^{t} e^{\lambda_1(t-s)} H(U) \, (s) \, ds + \int_{t}^{\infty} e^{\lambda_2(t-s)} H(U) \, (s) \, ds \right],
\]

where \( H(U)(t) = -g(1 - U(t), (h \ast S(1 - U))(t)) + L_1 U(t) \), \( L_1 \) is defined in Theorem 2.3 and 

\[
\lambda_1 = \frac{c - \sqrt{c^2 + 4dL_1}}{2d}, \quad \lambda_2 = \frac{c + \sqrt{c^2 + 4dL_1}}{2d}.
\]

By virtue of \(-g(1 - U(t), (h \ast S(1 - U))(t)) + L_1 U(t) \geq 0 \), for \( \beta = \max \{-\lambda_1, \lambda_2\} \), 

\[
\frac{d}{dt} [U(t) e^{\beta t}] = \frac{e^{\beta t}}{d(\lambda_2 - \lambda_1)} \left[ \beta \int_{-\infty}^{t} e^{\lambda_1(t-s)} H(U) \, (s) \, ds + \int_{t}^{\infty} e^{\lambda_2(t-s)} H(U) \, (s) \, ds \right]
\]

\[
+ \frac{e^{\beta t}}{d(\lambda_2 - \lambda_1)} \left[ \lambda_1 \int_{-\infty}^{t} e^{\lambda_1(t-s)} H(U) \, (s) \, ds + \lambda_2 \int_{t}^{\infty} e^{\lambda_2(t-s)} H(U) \, (s) \, ds \right] \geq 0.
\]

Set 

\[
L = \max \left\{ \max |\partial_{11} g(u, v)|, \max |\partial_{12} g(u, v) S''(w)| + \max |\partial_{12} g(u, v) S'(w)|, \max |\partial_{22} g(u, v) S''(w)|, \max |\partial_{22} g(u, v) S'(w)| \right\},
\]

\[
\varpi_1 = \partial_{11} g(1, S(1)) + \partial_{12} g(1, S(1)) S'(1) < 0
\]

and

\[
\varpi_2 = \partial_{11} g(1, S(1)) - \partial_{12} g(1, S(1)) S'(1) < 0.
\]

Since \( \lim_{t \to +\infty} U(t) = 0 \) and \( \lim_{t \to +\infty} V(t) = 0 \), there exists \( t' > 0 \) such that for any \( t > t' \),

\[
-\frac{1}{4} \varpi_1 [U(t) + V(t)] > L \left[ (1 + 2G(2\beta)) U^2(t) + 2U(t) V(t) + V^2(t) \right].
\]

Then by Taylor’s expansion, for any \( t > t' \),

\[
dU''(t) - cU'(t)
\]

\[
= g(1 - U(t), (h \ast S(1 - U))(t))
\]

\[
\geq -\varpi_1 g(1, S(1)) U(t) - \varpi_2 g(1, S(1)) S'(1) V(t)
\]

\[
- L \left[ (1 + 2G(2\beta)) U^2(t) + 2U(t) V(t) + V^2(t) \right]
\]

\[
= -\frac{1}{4} \varpi_1 U(t) + \frac{1}{2} \varpi_2 (V(t) - U(t)) - \frac{1}{4} \varpi_1 V(t) - \frac{1}{4} \varpi_1 (U(t) + V(t))
\]

\[
- L \left[ (1 + 2G(2\beta)) U^2(t) + 2U(t) V(t) + V^2(t) \right]
\]

(3.1) \[
\geq -\frac{1}{4} \varpi_1 U(t) + \frac{1}{2} \varpi_2 (V(t) - U(t)) - \frac{1}{4} \varpi_1 V(t).
\]

Now we show that for any \( t \in \mathbb{R}, \) \( U(t) \) is integrable on \([t, +\infty)\) and there exists \( \rho > 0 \) such that \( \sup_{t \in \mathbb{R}} U(t) e^{\rho t} < +\infty. \) By Fubini’s theorem and Lebesgue’s dominated
convergence theorem, we have, as $y \to +\infty$,

\[
\int_t^y (V(s) - U(s)) \, ds
\]

\[
= \int_t^y \int_0^\tau \int_{-\infty}^\infty h(z, r) \left( U(s - cr - z) - U(s) \right) \, dz \, dr \, ds
\]

\[
= - \int_t^y \int_0^\tau \int_{-\infty}^\infty (z + cr) h(z, r) \int_0^1 U'(s - \theta (cr + z)) \, d\theta \, dz \, dr
\]

\[
= - \int_0^\tau \int_{-\infty}^\infty (z + cr) h(z, r) \int_0^y U'(s - \theta (cr + z)) \, d\theta \, dz \, dr
\]

\[
\rightarrow \int_0^\tau \int_{-\infty}^\infty (z + cr) h(z, r) \int_0^1 U(t - \theta (cr + z)) \, d\theta \, dz \, dr.
\]

Since $\lim_{t \to +\infty} U'(t) = 0$ by Lemma 3.4, integrating (3.1) from $t$ to $+\infty$, we have that for any $t > t'$,

\[
-dU'(t) + cU(t) - \frac{1}{2} \overline{\omega}_2 \int_0^\tau \int_{-\infty}^\infty (z + cr) h(z, r) \int_0^1 U(t - \theta (cr + z)) \, d\theta \, dz \, dr
\]

\[
\geq -\frac{1}{4} \overline{\omega}_1 \int_t^{+\infty} U(s) \, ds - \frac{1}{4} \overline{\omega}_1 \int_t^{+\infty} V(s) \, ds,
\]

which implies that $U(t)$ and $V(t)$ are integrable on $[t, +\infty)$.

Now we define a function $W(t) = \int_t^{+\infty} U(s) \, ds$, which is decreasing and satisfies $\lim_{t \to +\infty} W(t) = 0$ and $W(t) \leq W(0) - t$ for $t \geq 0$. Obviously,

\[
\int_t^{+\infty} V(s) \, ds = \int_t^{+\infty} \int_0^\tau \int_{-\infty}^\infty h(z, r) U(s - cr - z) \, dz \, dr \, ds
\]

\[
= \lim_{y \to +\infty} \int_t^y \int_0^\tau \int_{-\infty}^\infty h(z, r) U(s - cr - z) \, dz \, dr \, ds
\]

\[
= \lim_{y \to +\infty} \int_0^\tau \int_{-\infty}^\infty h(z, r) \int_t^y U(s - cr - z) \, d\theta \, dz \, dr
\]

\[
= \int_0^\tau \int_{-\infty}^\infty h(z, r) \int_t^{+\infty} U(s - cr - z) \, d\theta \, dz \, dr
\]

\[
= \int_0^\tau \int_{-\infty}^\infty h(z, r) W(t - cr - z) \, dz \, dr.
\]

Integrating (3.1) from $t$ to $+\infty$ with $t > t'$, we get

\[
-dU'(t) + cU(t)
\]

\[
\geq -\frac{1}{4} \overline{\omega}_1 W(t) + \frac{1}{2} \overline{\omega}_2 \left[ \int_0^\tau \int_{-\infty}^\infty h(z, r) W(t - cr - z) \, dz \, dr - W(t) \right]
\]

(3.2) \[ -\frac{1}{4} \overline{\omega}_1 \int_0^\tau \int_{-\infty}^\infty h(z, r) W(t - cr - z) \, dz \, dr. \]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Note that
\[
\int_t^y \int_0^\tau \int_{-\infty}^\infty h(z, r) [W(s - cr - z) - W(s)] dz dr ds
\]
\[= - \int_t^y \int_0^\tau \int_{-\infty}^\infty (cr + z) h(z, r) \int_0^1 W'(s - \theta (cr + z)) d\theta dz dr ds
\]
\[= - \int_0^\tau \int_{-\infty}^\infty (cr + z) h(z, r) \int_0^1 [W(y - \theta (cr + z)) - W(t - \theta (cr + z))] d\theta dz dr
\]
\[\to \int_0^\tau \int_{-\infty}^\infty (cr + z) h(z, r) \int_0^1 W(t - \theta (cr + z)) d\theta dz dr \text{ as } y \to +\infty.
\]

Then, for any \( t > t', \) \( (3.2) \) implies that
\[
dU(t) + cW(t) - \frac{1}{2} \varpi_2 W(t) \int_t^\tau \int_{-\infty}^\infty (cr + z) h(z, r) d\theta dz dr
\]
\[
+(3.3) \geq -\frac{1}{4} \varpi_1 \int_t^\tau \int_{-\infty}^\infty h(z, r) W(s - cr - z) d\theta dz dr ds,
\]
which means that \( W(t) \) and \( \int_t^\tau \int_{-\infty}^\infty h(z, r) W(t - cr - z) d\theta dz dr \) are integrable on \([t, +\infty)\).

Since \( W(t) \) is decreasing, then for any \( t \in \mathbb{R} \), we have
\[
(z + cr) h(z, r) W(t - (z + cr)) \geq (z + cr) h(z, r) \int_0^1 W(t - \theta (z + cr)) d\theta.
\]

Again, for \( z + cr \geq 0 \),
\[
W(t - (z + cr)) = W(t) + \int_{t-(z+cr)}^t U(s) ds \leq W(t) + \int_{t-(z+cr)}^t U(t) e^{\beta(t-s)} ds
\]
\[
\leq W(t) + \frac{1}{\beta} e^{\beta(z+cr)} U(t).
\]

Consequently, by \( (3.3) \), we have
\[
dU(t) + cW(t) - \frac{1}{2} \varpi_2 W(t) \int_t^\tau \int_{-\infty}^\infty (cr + z) h(z, r) d\theta dz dr
\]
\[
- \frac{1}{2} \beta \varpi_2 U(t) \int_t^\tau \int_{-\infty}^\infty (cr + z) e^{\beta(z+cr)} h(z, r) d\theta dz dr
\]
\[
\geq dU(t) + cW(t) - \frac{1}{2} \varpi_2 \int_t^\tau \int_{-\infty}^\infty (cr + z) h(z, r) W(t - (cr + z)) d\theta dz dr
\]
\[
\geq dU(t) + cW(t) - \frac{1}{2} \varpi_2 \int_t^\tau \int_{-\infty}^\infty (cr + z) h(z, r) \int_0^1 W(t - \theta (cr + z)) d\theta dz dr
\]
\[
\geq -\frac{1}{4} \varpi_1 \int_t^\tau W(s) ds.
\]

Thus, there exists a sufficiently large \( K > 0 \) such that for any \( t > t' \) and any \( p > 0 \),
\[
K [U(t) + W(t)] \geq -\frac{1}{4} \varpi_1 \int_t^\tau [U(s) + W(s)] ds \geq -\frac{p}{4} \varpi_1 [U(t + p) + W(t + p)].
\]
Choosing \( p_0 > 0 \) sufficiently large, then there exists \( \theta_0 \in (0, 1) \) such that for any \( t > t' \), \( \theta_0 \left[ U(t) + W(t) \right] \geq U(t + p_0) + W(t + p_0) \). Let \( \epsilon(t) = \left[ U(t) + W(t) \right] e^{\rho t} \), where \( \rho = \frac{1}{p_0} \ln \frac{\theta_0}{\theta_0} > 0 \). Then \( \epsilon(t + p_0) = \left[ U(t + p_0) + W(t + p_0) \right] e^{\rho(t + p_0)} \leq \theta_0 \left[ U(t) + W(t) \right] e^{\rho(t + p_0)} = \epsilon(t) \). In view of \( \lim_{t \to -\infty} \left[ U(t) + W(t) \right] e^{\rho t} = 0 \), then \( \sup_{t \in [0, \infty)} \left\{ [U(t) + W(t)] e^{\rho t} \right\} < \infty \), which implies that \( \sup_{t \in [0, \infty)} \{ U(t) e^{\rho t} \} < \infty \).

Next we prove that \( \lim_{t \to +\infty} e^{-\lambda_1 t} U(t) \) exists. For \( \lambda \) with \( -\rho \leq \text{Re} \lambda < 0 \), we define a two-sided Laplace transform of \( U \) by

\[
\ell(\lambda) \equiv \int_{-\infty}^{\infty} e^{-\lambda t} U(t) \, dt.
\]

Note that for \( t \leq 0 \), \( h(y, r) U(t - cr - y) e^{-\text{Re} \lambda t} < h(y, r) e^{-\text{Re} \lambda t} \) and for \( t > 0 \),

\[
h(y, r) U(t - cr - y) e^{-\text{Re} \lambda t} = h(y, r) U(t - cr - y) e^{\rho t} e^{\rho y} e^{(-\rho - \text{Re} \lambda)t} \leq \tilde{M} h(y, r) e^{\rho y} e^{(-\rho - \text{Re} \lambda)t},
\]

where \( \tilde{M} = \sup_{t \in [0, \infty)} \{ U(t) e^{\rho t} \} \); then \( h(y, r) U(t - cr - y) e^{-\text{Re} \lambda t} \) is integrable on \( (r, y, t) \in [0, \tau] \times \mathbb{R} \times \mathbb{R} \). Since \( e^{-\text{dim} \lambda} \) is bounded and hence \( h(y, r) U(t - cr - y) e^{-\lambda t} \) is integrable on \( (r, y, t) \in [0, \tau] \times \mathbb{R} \times \mathbb{R} \), by Fubini's Theorem, we have

\[
\int_{-\infty}^{\infty} e^{-\lambda t} V(t) \, dt = \int_{-\infty}^{\infty} e^{-\lambda t} \int_{0}^{\tau} \int_{-\infty}^{\infty} h(y, r) U(t - cr - y) \, dy \, dr \, dt
\]

\[
= \int_{0}^{\tau} \int_{-\infty}^{\infty} h(y, r) e^{-\lambda(\tau + y)} \int_{-\infty}^{\infty} e^{-\lambda(t - cr - y)} U(t - cr - y) \, dt \, dy \, dr
\]

\[
= \ell(\lambda) \int_{0}^{\tau} \int_{-\infty}^{\infty} h(y, r) e^{-\lambda(\tau + y)} \, dy \, dr
\]

\[
= \ell(\lambda) G(\lambda).
\]

Since

\[
dU''(t) - cU'(t) + \partial_1 g(1, S(1)) U(t)
\]

\[
+ \partial_2 g(1, S(1)) S'(1) V(t)
\]

\[
= \partial_1 g(1, S(1)) U(t) + \partial_2 g(1, S(1)) S'(1) V(t)
\]

\[
+ \partial_2 g(1, S(1)) S'(1) V(t)
\]

\[
+ g(1 - U(t), (h * S(1 - U))(t)),
\]

we have

\[
\Delta_1(\lambda) \ell(\lambda) = \int_{-\infty}^{\infty} e^{-\lambda t} [\partial_1 g(1, S(1)) U(t) + \partial_2 g(1, S(1)) S'(1) V(t)
\]

\[
+ g(1 - U(t), (h * S(1 - U))(t))] \, dt.
\]

By \( \lim_{t \to +\infty} U(t) = 0 \) and \( \lim_{t \to +\infty} V(t) = 0 \), we have

\[
\partial_1 g(1, S(1)) U(t) + \partial_2 g(1, S(1)) S'(1) V(t) + g(1 - U(t), (h * S(1 - U))(t))
\]

\[
= O(U^2(t) + V^2(t))
\]

as \( t \to +\infty \). Hence, the right-hand side of equality (3.3) is defined for \( \lambda \) with \( -2\rho \leq \text{Re} \lambda < 0 \). Now we use a property of Laplace transforms (Widder [44 p. 58]).
$U(t) > 0$, there exists a real number $\vartheta$ such that $\ell(\lambda)$ is analytic for $\vartheta < \Re \lambda < 0$ and $\ell(\lambda)$ has a singularity at $\lambda = \vartheta$. Hence, $\ell(\lambda)$ is defined for $\Re \lambda > \lambda_{11}$.

We rewrite (3.4) as

$$
\int_0^{+\infty} U(t) e^{-\lambda t} dt = -\int_{-\infty}^0 U(t) e^{-\lambda t} dt + \frac{1}{\Delta(\lambda)} \int_{-\infty}^{+\infty} e^{-\lambda t} \left[ \partial_1 g(1, S(1)) U(t) + \partial_2 g(1, S(1)) S'(1)V(t) + g(1-U(t), (h \ast S(1-U))'(t)) \right] dt.
$$

Note that $\int_{-\infty}^0 U(t) e^{-\lambda t} dt$ is analytic for $\Re \lambda < 0$. Also, the equation $\Delta(\lambda) = 0$ does not have any zero with $\Re \lambda = \lambda_{11}$ other than $\lambda = \lambda_{11}$. In fact, let $\lambda = \lambda_{11} + i\gamma$; then $\Delta(\lambda) = 0$ implies

$$
- \partial_2 g(1, S(1)) S'(1) \int_0^{+\infty} \int_{-\infty}^{+\infty} h(y, r) e^{-\lambda_{11}(y+cr)} [\cos \gamma cr \cos \gamma y - \sin \gamma cr \sin \gamma y] dy dr
$$

(3.5)

$$
= \sigma \lambda_{11}^2 - \sigma \gamma^2 - c \lambda_{11} + \partial_1 g(1, S(1))
$$

and

$$
2d\gamma - c\gamma - \partial_2 g(1, S(1)) S'(1) \int_0^{+\infty} \int_{-\infty}^{+\infty} h(y, r) e^{-\lambda_{11}(y+cr)} [\sin \gamma cr \cos \gamma y + \cos \gamma cr \sin \gamma y] dy dr = 0.
$$

By using $\Delta(\lambda_{11}) = 0$, then (3.5) can be rewritten as

$$
-d\gamma^2 = \partial_2 g(1, S(1)) S'(1) \int_0^{+\infty} \int_{-\infty}^{+\infty} h(y, r) e^{-\lambda_{11}(y+cr)} \left[ 2 \left( \sin \frac{\gamma cr}{2} \right)^2 + 2 \left( \sin \frac{\gamma y}{2} \right)^2 + \sin \gamma cr \sin \gamma y \right] dy dr.
$$

Since

$$
2 \left( \sin \frac{\gamma cr}{2} \right)^2 + 2 \left( \sin \frac{\gamma y}{2} \right)^2 - 4 \left( \sin \frac{\gamma cr}{2} \right)^2 \left( \sin \frac{\gamma y}{2} \right)^2 + \sin \gamma cr \sin \gamma y
$$

$$
= 2 \left( \sin \frac{\gamma cr}{2} \right)^2 \left( \cos \frac{\gamma y}{2} \right)^2 + 2 \left( \cos \frac{\gamma cr}{2} \right)^2 \left( \sin \frac{\gamma y}{2} \right)^2 + \sin \gamma cr \sin \gamma y
$$

$$
\geq 4 \left| \sin \frac{\gamma cr}2 \cos \frac{\gamma cr}2 \sin \frac{\gamma y}2 \cos \frac{\gamma y}2 \right| + \sin \gamma cr \sin \gamma y
$$

$$
= \left| \sin \gamma cr \sin \gamma y \right| + \sin \gamma cr \sin \gamma y \geq 0,
$$

we have $-d\gamma^2 \geq 0$, which implies $\gamma = 0$.

Since $U(t)$ is decreasing, then Lemma 3.3 implies that $\lim_{t \to \infty} e^{-\lambda_{11}t} (1 - \phi(t)) = \lim_{t \to \infty} e^{-\lambda_{11}t} U(t)$ exists. Take $\lim_{t \to \infty} e^{-\lambda_{11}t} (1 - \phi(t)) = a_{11}$. We now prove that $\lim_{t \to \infty} e^{-\lambda_{11}t} \phi(t) = -\lambda_{11} a_{11}$. From Lebesgue’s dominated convergence theorem, we know that

$$
\lim_{t \to \infty} e^{-\lambda_{11}t} V(t)
$$

$$
= \int_0^{+\infty} \int_{-\infty}^{+\infty} h(z, r) e^{-\lambda_{11}(z+cr)} \left[ \lim_{t \to \infty} e^{-\lambda_{11}(t-z-cr)} U(t-z-cr) \right] dzdr
$$

$$
= a_{11} \int_0^{+\infty} \int_{-\infty}^{+\infty} h(z, r) e^{-\lambda_{11}(z+cr)} dz dr = a_{11} G(\lambda_{11}).
$$
Since as $t \to +\infty$,
\[
g(1 - U(t), (h \ast S(1 - U))(t)) = -\partial_1 g(1, S(1)) U(t) - \partial_2 g(1, S(1)) S'(1)V(t) + O(U^2(t) + V^2(t)),
\]
then
\[
\lim_{t \to \infty} e^{-\lambda_{11} t} g(1 - U(t), (h \ast S(1 - U))(t)) = -a_{11} \left[ \partial_1 g(1, S(1)) + \partial_2 g(1, S(1)) S'(1)G(\lambda_{11}) \right].
\]
Using $\lim_{t \to \infty} U'(t) = 0$ and integrating the two sides of the equality $dU''(t) = cU'(t) + g(1 - U(t), (h \ast S(1 - U))(t))$ from $t$ to $+\infty$, we have
\[
dU'(t) = cU(t) - \int_t^\infty g(1 - U(s), (h \ast S(1 - U))(s)) \, dt.
\]
Thus,
\[
\lim_{t \to \infty} e^{-\lambda_{11} t} \phi'(t) = -\lim_{t \to \infty} e^{-\lambda_{11} t} U'(t) = -\frac{c a_{11}}{d} + \frac{1}{d} \lim_{t \to \infty} e^{-\lambda_{11} t} \int_t^\infty g(1 - U(s), (h \ast S(1 - U))(s)) \, dt = -\frac{c}{d} - \lim_{t \to \infty} e^{-\lambda_{11} t} g(1 - U(t), (h \ast S(1 - U))(t)) \frac{d\lambda_{11}}{d\lambda_{11}} = -a_{11} [c \lambda_{11} - \partial_1 g(1, S(1)) - \partial_2 g(1, S(1)) S'(1)G(\lambda_{11})]
\]
We have completed the proof of the first conclusion. The remainder can be proved by similar arguments. The proof is complete.

4. Existence of entire solutions

We study the following ordinary differential equation:
\[
\frac{d}{dt} p(t) = c + N e^{\alpha p(t)}, \quad t \leq 0,
\]
where $N$, $c$ and $\alpha$ are positive constants. Solving this equation explicitly, we have
\[
p(t) = p(0) + ct - \frac{1}{\alpha} \ln \left\{ 1 + \frac{N}{c} e^{\alpha p(0)} (1 - e^{\alpha t}) \right\}.
\]
It is clear that the solution $p(t)$ is monotone increasing. Let
\[
\omega = p(0) - \frac{1}{\alpha} \ln \left\{ 1 + \frac{N}{c} e^{\alpha p(0)} \right\}.
\]
Then from the identity $p(t) - ct - \omega = -\frac{1}{\alpha} \ln \left\{ 1 - e^{c(t + \omega)} / (1 + r) \right\}$ and $r = N e^{\alpha p(0)} / c$, it follows that for some positive constant $R_0$,
\[
0 < p(t) - ct - \omega \leq R_0 e^{c t}, \quad \forall t \leq 0.
\]
We note that the above argument about $p(t)$ was first given by Guo and Morita
[20] (see also Fukao et al. [16]). In the sequel of this section, we always assume
that (1.1) has an increasing traveling wave solution \( \phi \) with wave speed \( c > 0 \). By Theorem 3.5, there are positive constants \( k, K, \mu, \eta \) such that
\[
\begin{align*}
(4.4) & \quad ke^{\lambda_0 t} \leq \phi (t) \leq Ke^{\lambda_0 t}, \quad ke^{\lambda_0 t} \leq (h \ast \phi) (t) \leq Ke^{\lambda_0 t} \quad (t \leq 0), \\
(4.5) & \quad \eta ke^{\lambda_0 t} \leq \eta \phi (t) \leq \eta \phi' (t), \quad \eta ke^{\lambda_0 t} \leq (h \ast \phi) (t) \leq \eta \phi' (t) \quad (t \leq 0), \\
(4.6) & \quad \eta \mu e^{\lambda_1 t} \leq \eta (1 - \phi (t)) \leq \eta \phi' (t), \quad \eta \mu e^{\lambda_1 t} \leq \eta (1 - (h \ast \phi) (t)) \leq \phi' (t) \quad (t \geq 0).
\end{align*}
\]

**Lemma 4.1.** There exists \( T < 0 \) such that \( \overline{\varpi} (x, t) \) defined by
\[
\overline{\varpi} (x, t) = \min \{ \phi (x + p (t)) + \phi (-x + p (t)), 1 \}
\]
is a supersolution of (1.1) on \((-\infty, T)\). \( p (t) \) is defined by (4.1) with \( \alpha = \lambda_{02}, \quad p (0) \leq 0 \) and
\[
N \geq \max \left\{ \frac{2LK^2}{\eta k}, \frac{4LK}{\eta \mu}, 4 \left( L + \frac{1}{2} + \int_0^T \int_0^\infty h (y, r) e^{2\beta y} dy dr \right) \frac{K}{\eta} \right\},
\]
where \( L \) and \( \beta \) are defined in Theorem 3.5.

**Proof.** Define
\[
\begin{align*}
A_1^+ & = \{ (x, t) \in \mathbb{R}^2 : \phi (x + p (t)) + \phi (-x + p (t)) > 1 \}, \\
A_1^- & = \{ (x, t) \in \mathbb{R}^2 : \phi (x + p (t)) + \phi (-x + p (t)) < 1 \}.
\end{align*}
\]
If \( (x, t) \in A_1^+ \), then \( \overline{\varpi} (x, t) = 1 \) and
\[
\frac{\partial \overline{\varpi}}{\partial t} - d \Delta \overline{\varpi} - g (\overline{\varpi} (x, t), (h \ast S (\overline{\varpi})) (x, t)) = -g (1, (h \ast S (\overline{\varpi})) (x, t)) \\
\geq -g (1, S (1)) = 0.
\]

Now we consider the case \( (x, t) \in A_1^- \). In this case, \( \overline{\varpi} (x, t) = \phi (x + p (t)) + \phi (-x + p (t)) \). Consequently,
\[
\begin{align*}
\frac{\partial \overline{\varpi}}{\partial t} - d \Delta \overline{\varpi} - g (\overline{\varpi} (x, t), (h \ast S (\overline{\varpi})) (x, t)) \\
= p' (t) [\phi' (x + p) + \phi' (-x + p)] - d [\phi'' (x + p) + \phi'' (-x + p)] \\
- g (\phi (x + p) + \phi (-x + p), (h \ast S (\overline{\varpi})) (x, t)) \\
= [p' (t) - d] [\phi' (x + p) + \phi' (-x + p)] + g (\phi (x + p), (h \ast S (\phi)) (x + p)) \\
+ g (\phi (-x + p), (h \ast S (\phi)) (-x + p)) \\
- g (\phi (x + p) + \phi (-x + p), (h \ast S (\overline{\varpi})) (x, t)) \\
= [\phi' (x + p) + \phi' (-x + p)] Ne^{\lambda_0 p} - R (x, t),
\end{align*}
\]
where
\[
R (x, t) = g (\phi (x + p) + \phi (-x + p), (h \ast S (\overline{\varpi})) (x, t)) \\
- g (\phi (x + p), (h \ast S (\phi)) (x + p)) - g (\phi (-x + p), (h \ast S (\phi)) (-x + p)).
\]
Since for \( r \geq 0 \),
\[
p(t) - cr = p(0) + c(t - r) - \frac{1}{\lambda_0} \ln \left\{ 1 + \frac{N_0 e^{\lambda_0 t}}{c} \left( 1 - e^{\lambda_0 (t-r)} \right) \right\}
\]
\[
\leq p(t) - cr,
\]

it follows that
\[
\xi(y,r) = \bar{\pi}(x-y,t-r) - \phi(x+p(t)-y-cr)
\]
\[
\leq \phi(x-y+p(t-r)) + \phi(-x+y+p(t-r)) - \phi(x+y+p(t)-y-cr) - \phi(x+p(t)-y-cr)
\]
\[
= \phi((-x+y+p(t)-cr).
\]

Consequently,
\[
R(x,t) = g(\phi(x+p) + \phi(-x+p), (h \ast S(\bar{\pi}))(x,t)) - g(\phi(x+p), (h \ast S(\phi))(x+p))
\]
\[
- \int_{0}^{1} \partial_t g(\phi(x+p) + \theta \phi(-x+p), \zeta(x,t), \phi(-x+p)
\]
\[
+ \partial_2 g(\phi(x+p) + \phi(-x+p), \zeta(x,t))
\]
\[
\times \int_{0}^{\tau} \int_{-\infty}^{\infty} h(y,r) S'((x-p-y-cr + \theta \zeta(y,r)) \zeta(y,r) dy dr d\theta
\]
\[
- \int_{0}^{1} \partial_t g(\theta \phi(-x+p), \int_{0}^{\tau} \int_{-\infty}^{\infty} h(y,r) S(\theta \zeta(y,r)) dy dr \phi(-x+p)
\]
\[
+ \partial_2 g(\theta \phi(-x+p), \int_{0}^{\tau} \int_{-\infty}^{\infty} h(y,r) S(\theta \zeta(y,r)) dy dr)
\]
\[
\times \int_{0}^{\tau} \int_{-\infty}^{\infty} h(y,r) S'((\theta \zeta(y,r)) \zeta(y,r) dy dr d\theta
\]
\[
\leq L [\phi(x+p) \phi(-x+p) + \phi(-x+p) (h \ast \phi)(x+p)
\]
\[
+ \phi(x+p) \int_{0}^{\tau} \int_{-\infty}^{\infty} h(y,r) \xi(y,r) dy dr
\]
\[
+ (h \ast \phi)(x+p) \int_{0}^{\tau} \int_{-\infty}^{\infty} h(y,r) \xi(y,r) dy dr
\]
\[
\leq L [\phi(x+p) \phi(-x+p) + \phi(-x+p) (h \ast \phi)(x+p)
\]
\[
+ \phi(x+p) (h \ast \phi)(-x+p) + (h \ast \phi)(x+p) (h \ast \phi)(-x+p)],
\]

where \( \zeta(x,t) = \int_{0}^{\tau} \int_{-\infty}^{\infty} h(y,r) S(\phi(x+p(t)-y-cr) + \theta \zeta(y,r)) dy dr. \)

Note that \( p(t) < 0 \) for all \( t \leq 0 \). Let \( U(x,t) = \frac{R(x,t)}{\phi'(x+p(t)) + \phi'(-x+p(t))} \).

Now we estimate \( U(x,t) \).
Case I: $\lambda_{02} \geq -\lambda_{11}$. We divide $\mathbb{R}$ into 3 regions.

(i) $p(t) \leq x \leq -p(t)$. By (4.4), we have the estimate $R(x, t) \leq 4LK^2 e^{2\lambda_{02}p}$.

Also, by (4.5), we have

$$
\phi' (x + p) + \phi' (-x + p) \geq \eta [\phi (x + p) + \phi (-x + p)]
$$

$$
\geq \eta \left[ e^{\lambda_{02}(x + p)} + e^{\lambda_{02}(-x + p)} \right] = \eta \left( e^{\lambda_{02}x} + e^{-\lambda_{02}x} \right) e^{\lambda_{02}p} \geq 2\eta ke^{\lambda_{02}p}.
$$

Hence, we have

$$
U (x, t) \leq \frac{2LK^2}{\eta k} e^{\lambda_{02}p}.
$$

(ii) $x \leq p(t)$. It follows from (4.6) that

$$
U (x, t) \leq \frac{2L (\phi (x + p) + (h * \phi) (x + p))}{\phi' (-x + p (t))} \leq \frac{4LKe^{\lambda_{02}(x + p)}}{\eta \mu e^{\lambda_{11}(-x + p)}} \leq \frac{4LK}{\eta \mu} e^{\lambda_{02}p}.
$$

(iii) $x \geq -p(t)$. By the symmetry $U (-x, t) = U (x, t)$ and (4.8), we obtain

$$
U (x, t) \leq \frac{4LK}{\eta \mu} e^{\lambda_{02}p}.
$$

Thus, combining (4.7)–(4.9) yields

$$
\frac{\partial}{\partial t} \Delta \tau - g (\tau, (h * S (\tau)) (x, t)) \geq 0.
$$

Case II: $0 < \lambda_{02} < -\lambda_{11}$. In this case, since $\lambda_{02}$ and $\lambda_{11}$ satisfy

$$
d\lambda_{02}^2 - c\lambda_{02} + \partial_1 g (0, S (0)) + \partial_2 g (0, S (0)) S' (0) G (\lambda_{02}) = 0,
$$

$$
d\lambda_{11}^2 - c\lambda_{11} + \partial_1 g (1, S (1)) + \partial_2 g (1, S (1)) S' (1) G (\lambda_{11}) = 0,
$$

and $G (\lambda_{02}) < G (\lambda_{11})$, then

$$
\partial_1 g (0, S (0)) + \partial_2 g (0, S (0)) S' (0) G (\lambda_{02}) > \partial_1 g (1, S (1)) + \partial_2 g (1, S (1)) S' (1) G (\lambda_{02}).
$$

Set

$$
\kappa = \partial_1 g (0, S (0)) + \partial_2 g (0, S (0)) S' (0) G (\lambda_{02}) - \partial_1 g (1, S (1)) + \partial_2 g (1, S (1)) S' (1) G (\lambda_{02}).
$$

Then there exists $\delta > 0$ with $\delta \leq S (1) - S (0)$ such that

$$
\partial_1 g (u, v) + \partial_2 g (u, v) w \varpi < \partial_1 g (0, S (0)) + \partial_2 g (0, S (0)) S' (0) G (\lambda_{02}) - \frac{\kappa}{2}
$$

for any $u \in (1 - \delta, 1), v \in (S (1) - \delta, S (1)), w \in (0, S' (1) + \delta)$ and $\varpi \in (0, G (\lambda_{02}) + \delta)$.

Take $B > c\tau$ such that

$$
\left[ \int_0^\tau \int_{-\infty}^B h (y, r) dy dr + \int_0^\tau \int_B^{+\infty} h (y, r) e^{\beta (y - \tau)} dy dr \right] \max_{u \in [0, 1]} S' (u) \leq \frac{\delta}{2} G (\lambda_{02}),
$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
where $\beta = \max \{-\lambda_1, \lambda_2\}$ is defined in Theorem 3.5. As in the proof of Theorem 3.5 we can show that $\phi(t) e^{-\beta t}$ is decreasing. Thus, we have

\begin{equation}
(4.10) \quad \int_0^\tau \int_{-\infty}^{-B} h(y,r) S'(\phi(x+p(t)-y-cr) + \theta \xi(y,r)) \xi(y,r) \, dy \, dr
\end{equation}

\begin{align*}
&\leq \left[ \int_0^\tau \int_{-\infty}^{-B} h(y,r) \phi(-x+p(t)+y-cr) \, dy \, dr \right] \max_{u \in [0,1]} S'(u)
\end{align*}

\begin{align*}
&\leq \left[ \int_0^\tau \int_{-\infty}^{-B} h(y,r) \, dy \, dr + \int_0^\tau \int_{-\infty}^{\infty} h(y,r) e^{\beta(y-cr)} \, dy \, dr \right] \max_{u \in [0,1]} S'(u) \phi(-x+p(t))
\end{align*}

\begin{equation}
\leq \frac{\delta}{2} G(\lambda_0) \phi(-x+p(t)).
\end{equation}

Since $S'(u)$ is continuous on $[0,1]$, then there exists $\rho_1 \in (0, \delta)$ such that for $u \in (1-\rho_1, 1]$, $S'(u) \in [0, S'(1) + \delta/2]$. Noting that

\[
\lim_{z \to -\infty} \int_0^\tau \int_{-\infty}^{\infty} h(y,r) S(\phi(z-y-cr)) \, dy \, dr = S(1) \quad \text{and} \quad \lim_{z \to -\infty} \phi(z) = 1,
\]

we can translate $\phi(z)$ along the $z-$axis so that for any $z \geq -B-cr, \phi(z) \in (1-\rho_1, 1]$ and for any $z \geq 0$,

\[
\int_0^\tau \int_{-\infty}^{\infty} h(y,r) S(\phi(z-y-cr)) \, dy \, dr \geq S(1) - \delta.
\]

Hence, $\phi(x+p(t)-y-cr) + \theta \xi(y,r) \in (1-\rho_1, 1]$ for any $x \geq -p(t), y \in [-B, B]$ and $r \in [0, \tau]$. Then, for any $x \geq -p(t), y \in [-B, B]$ and $r \in [0, \tau]$,

\begin{align}
(4.11) &\quad S'(\phi(x+p-y-cr) + \theta \xi(y,r)) \in [0, S'(1) + \delta/2], \\
(4.12) &\quad \int_0^\tau \int_{-\infty}^{\infty} h(y,r) S(\phi(x+p-y-cr) + \theta \xi(y,r)) \, dy \, dr \in (S(1) - \delta, S(1)).
\end{align}

In view of

\[
\lim_{z \to -\infty} \frac{\int_0^\tau \int_{-B}^{B} h(y,r) \phi(z+y-cr) \, dy \, dr}{\phi(z)} \leq \lim_{z \to -\infty} \frac{(h * \phi)(z)}{\phi(z)} = G(\lambda_0),
\]

we can take $T_1 \leq 0$ so that for any $t \leq T_1$ and $x \geq -p(t)$,

\begin{equation}
(4.13) \quad \int_0^\tau \int_{-\infty}^{\infty} h(y,r) \phi(-x+p(t)+y-cr) \, dy \, dr \leq (G(\lambda_0) + \delta) \phi(-x+p(t)),
\end{equation}

\begin{equation}
(4.14) \quad \leq \partial_2 g(0, S(0)) S'(0) G(\lambda_0) - \frac{\kappa}{2} \phi(-x+p(t))
\end{equation}

\begin{equation}
\leq \partial_2 g(0, S(0)) S'(0) \int_0^\tau \int_{-\infty}^{\infty} h(y,r) \phi(-x+p(t)+y-cr) \, dy \, dr.
\end{equation}
Thus, by (1.10)-(1.14), for any $t \leq T_1$ and $x \geq -p(t)$, we have

$$
\begin{align*}
\int_0^1 \left[ \partial_t g(\phi(x + p(t)) + \phi(x + p(t)), \zeta(x, t)) \phi(x + p(t)) \\
+ \partial_y g(\phi(y + p(t))) \phi(y + p(t)), \zeta(x, t)) \\
\times \int_0^T \int_{-\infty}^\infty h(y, r) S'(\phi(x + p(t) - y - cr) + \frac{\theta}{2} \zeta(y, r)) \xi(y, r) dy dr \right] d\theta \\
\leq \left[ \partial_t g(0, S(0)) + \partial_y g(0, S(0)) S'(0) G(\lambda_{02}) - \frac{K}{2} \right] \phi(-x + p(t)) \\
\leq \partial_t g(0, S(0)) \phi(-x + p(t)) + \partial_y g(0, S(0)) S'(0) (h*\phi)(-x + p(t)).
\end{align*}
$$

Consequently, for any $t \leq T_1$ and $x \geq -p(t)$, we have

(4.15)

$$R(x, t) \leq \partial_t g(0, S(0)) (h*\phi)(-x + p(t))$$

$$- \int_0^1 \left[ \partial_t g(\theta\phi(-x + p), (h*S(\theta\phi))(-x + p)) \phi(-x + p) \\
+ \partial_y g(\theta\phi(-x + p), (h*S(\theta\phi))(-x + p)) \\
\times \int_0^T \int_{-\infty}^\infty h(y, r) S'(\theta\phi(-x + p + y - cr)) \phi(-x + p + y - cr) dy dr \right] d\theta \\
\leq L' \left[ \phi'(x + p) + 2\phi(x + p)(h*\phi)(-x + p) + (h*\phi)^2(-x + p) \right],$$

where $L' = L + \frac{1}{2} + \int_0^\infty h(y, r) e^{a(y)} dy dr$.

As in the proof of Case I, we divide $\mathbb{R}$ into three intervals $[p, -p], (-\infty, p)$ and $(-p, \infty)$. In the interval $[p, -p]$, we obtain the same estimate as (4.7) for $U(x, t)$.

For $x > -p > 0$, by (1.14), we obtain

$$U(x, t) \leq \frac{L' \phi(x + p) + (h*\phi)(x + p)}{\phi'(x + p)} \leq \frac{4L'K}{\eta} e^{\lambda_{02}(x+p)} \leq \frac{4L'K}{\eta} e^{\lambda_{02}p}.$$

The estimate for $x \leq p$ can be derived as the case for $x \geq -p$ by the symmetry of $U(x, t)$. Hence, $\partial_{\lambda_{02}} - \Delta \phi - g(\phi(x, t), (h*S(\phi))(x, t)) \geq 0$.

In order to show that there exists $T \leq 0$ so that $\phi(x, t)$ is a supersolution of (1.1) in $\mathbb{R} \times (-\infty, T)$, we first show the following claim.

Claim. There exists $T \leq 0$ so that for every $t < T$, there are only a finite number of points in $x \in \mathbb{R}$ so that $\phi(x + p(t)) + \phi(-x + p(t)) = 1$.

In fact, if $\lambda_{02} > -\lambda_{11}$, then for sufficiently large $x > -p(t)$,

$$\phi(x + p(t)) + \phi(-x + p(t)) \leq 1 - \mu e^{\lambda_{11}(x+p(t))} + Ke^{\lambda_{02}(x+p(t))} < 1$$

and for sufficiently large $|x|$ with $x < p(t)$,

$$\phi(x + p(t)) + \phi(-x + p(t)) \leq 1 - \mu e^{\lambda_{11}(-x+p(t))} + Ke^{\lambda_{02}(x+p(t))} < 1.$$ 

Similarly, we can show that for sufficiently large $|x| > |p(t)|$,

$$\phi(x + p(t)) + \phi(-x + p(t)) > 1$$

if $\lambda_{02} < -\lambda_{11}$. If $\lambda_{02} = -\lambda_{11}$, then we can take a $T_2 < 0$ so that for $t < T_2$, $\mu e^{-\lambda_{02}p(t)} - Ke^{\lambda_{02}p(t)} > 0$. Then for sufficiently large $x > -p(t), t < T_2$,

$$\phi(x + p(t)) + \phi(-x + p(t)) \leq 1 - \mu e^{\lambda_{11}(x+p(t))} + Ke^{\lambda_{02}(x+p(t))} = 1 - e^{-\lambda_{02}x} \left( \mu e^{-\lambda_{02}p(t)} - Ke^{\lambda_{02}p(t)} \right) < 1.$$
By the symmetry, for sufficiently large $|x|$ with $x < p(t)$, $t < T_2$, $\phi(x + p(t)) + \phi(-x + p(t)) < 1$. Now choose $T = 0$ if $\lambda_{02} > -\lambda_{11}$, $T = T_1$ if $\lambda_{02} < -\lambda_{11}$ and $T = T_2$ if $\lambda_{02} = -\lambda_{11}$. Then the claim follows.

So far, for $T \leq 0$ defined in the above claim, we have proved for any $x \in \mathbb{R}$ and $t \in (-\infty, T)$ with $(x, t) \in A^+ \cup A^-$,

\[
(4.16) \quad \frac{\partial \varphi}{\partial t} - d\Delta \varphi - g(\varphi(x, t), (h \ast S(\varphi))(x, t)) \geq 0,
\]

and for every $t < T$, there are only a finite number of points in $x \in \mathbb{R}$ such that $\phi(x + p(t)) + \phi(-x + p(t)) = 1$. In the following, we show that $\varphi(x, t)$ is a supersolution of (1.1) in $\mathbb{R} \times (-\infty, T)$. Assume that $x(t_0) \in \mathbb{R}$ satisfies $\phi(x(t_0) + p(t_0)) + \phi(-x(t_0) + p(t_0)) = 1$ for $t_0 < T$. It is easy to see that $\frac{\partial}{\partial x^2} \varphi(x(t_0) - 0, t_0) \geq \frac{\partial}{\partial x^2} \varphi(x(t_0) + 0, t_0)$. By using the inequality (4.16) and a similar argument as in [42] and [43] for the function

\[
\frac{1}{\sqrt{4\pi d(t - r)}} \int_{-\infty}^{\infty} e^{-\frac{(y-r)^2}{4d(t-r)}} \varphi(y, T') dy, \quad 0 \leq r < t \leq T - T',
\]

we can show that for every $T' < T$, $w(x, t) = \varphi(x, t + T')$, where $(x, t) \in \mathbb{R} \times [-\tau, T - T')$, is a supersolution of (1.1) on $\mathbb{R} \times [0, T - T')$. The proof is complete.

\textbf{Lemma 4.2.} If $(x, t) = \max \{\phi(x + ct + \omega), \phi(-x + ct + \omega)\}$ is a subsolution of (1.1) on $\mathbb{R} \times (-\infty, 0)$, where $\omega$ is defined by (1.1).

\textbf{Proof.} When $x > 0$, $v(x, t) = \phi(x + ct + \omega)$, hence,

\[
\frac{\partial u}{\partial t} - d\Delta u - g(u(x, t), (h \ast S(u))(x, t)) = c\phi'(x + ct + \omega) - d\phi''(x + ct + \omega) - g(\phi(x + ct + \omega), (h \ast S(u))(x, t)) = g(\phi(x + ct + \omega), (h \ast S(u))(x, t)) - g(\phi(x + ct + \omega), (h \ast S(u))(x, t)) \leq 0.
\]

Similarly, we can prove that for $x < 0$, $\frac{\partial u}{\partial t} - d\Delta u - g(u(x, t), (h \ast S(u))(x, t)) \leq 0$.

Note that for every $t < 0$,

\[
\frac{\partial}{\partial x} u(0 + 0, t) = \phi'(ct + \omega) > -\phi'(ct + \omega) = \frac{\partial}{\partial x} u(0, 0, t).
\]

Using a similar argument as in [42] and [43] for the function

\[
\frac{1}{\sqrt{4\pi d(t - r)}} \int_{-\infty}^{\infty} e^{-\frac{(y-r)^2}{4d(t-r)}} u(y, T') dy, \quad 0 \leq r < t \leq -T',
\]

we can show that for every $T' < 0$, $w(x, t) = u(x, t + T')$ defined on $(x, t) \in \mathbb{R} \times [\tau, -T')$ is a subsolution of (1.1) on $\mathbb{R} \times [0, T')$. The proof is complete.
Proof: First, by comparison, there is $0 \leq u(x, t) \leq 1$ for any $(x, t) \in \mathbb{R} \times [\tau, \infty)$. Note that for $s \geq \tau$ and $t > s$,

$$u(x, t) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{4\pi d(t-s)}} e^{-\frac{(x-y)^2}{4\pi d(t-s)}} u(y, s) \, dy + \int_{s}^{t} \int_{-\infty}^{\infty} \frac{1}{\sqrt{4\pi d(t-r)}} e^{-\frac{(x-y)^2}{4\pi d(t-r)}} F(u_r) \, dydr. \tag{4.17}$$

Consequently,

$$\frac{\partial}{\partial x} u(x, t) = \int_{-\infty}^{\infty} \frac{-2(x-y)}{4d(t-s)} \frac{1}{\sqrt{4\pi d(t-s)}} e^{-\frac{(x-y)^2}{4\pi d(t-s)}} u(y, s) \, dy + \int_{s}^{t} \int_{-\infty}^{\infty} \frac{-2(x-y)}{4d(t-r)} \frac{1}{\sqrt{4\pi d(t-r)}} e^{-\frac{(x-y)^2}{4\pi d(t-r)}} F(u_r) \, dydr.$$

Then for $s \geq \tau$ and $t \in [s+1, s+5]$, we have

$$\left| \frac{\partial}{\partial x} u(x, t) \right| \leq \int_{-\infty}^{\infty} \frac{2|y|}{4d(t-s)} \frac{1}{\sqrt{4\pi d(t-s)}} e^{-\frac{(x-y)^2}{4\pi d(t-s)}} \, dy + \int_{s}^{t} \int_{-\infty}^{\infty} \frac{2|y|}{4d(t-r)} \frac{1}{\sqrt{4\pi d(t-r)}} e^{-\frac{(x-y)^2}{4\pi d(t-r)}} \, dy \sup_{v \in C[0,1]} \| F(v) \|_X \leq \frac{1}{\sqrt{\pi d}} + \frac{4}{\sqrt{\pi d}} \sup_{v \in C[0,1]} \| F(v) \|_X \equiv M_2.$$

Obviously, $s \geq \tau$ is arbitrary, which implies that $\left| \frac{\partial}{\partial x} u(x, t) \right| \leq M_2$ for any $x \in \mathbb{R}$ and any $t \geq \tau + 1$. Moreover,

$$\frac{\partial}{\partial x} u(x,t) = \int_{-\infty}^{\infty} \frac{-2(x-y)}{4d(t-s)} \frac{1}{\sqrt{4\pi d(t-s)}} e^{-\frac{(x-y)^2}{4\pi d(t-s)}} u(y, s) \, dy + \int_{s}^{t} \int_{-\infty}^{\infty} \frac{1}{4\pi d(t-r)} e^{-\frac{(x-y)^2}{4\pi d(t-r)}} \frac{\partial}{\partial y} F(u_r) \, dydr.$$

Hence,

$$\frac{\partial^2}{\partial x^2} u(x,t) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{4\pi d(t-s)}} \left\{ \frac{-2}{4d(t-s)} + \frac{4(x-y)^2}{[4d(t-s)]^2} \right\} e^{-\frac{(x-y)^2}{4\pi d(t-s)}} u(y, s) \, dy + \int_{s}^{t} \int_{-\infty}^{\infty} \frac{-2(x-y)}{4d(t-r)} \frac{1}{\sqrt{4\pi d(t-r)}} e^{-\frac{(x-y)^2}{4\pi d(t-r)}} \frac{\partial}{\partial y} F(u_r) \, dydr.$$

Thus, for $s \geq 2\tau + 1$ and $t \in [s+1, s+5]$,

$$\left| \frac{\partial^2}{\partial x^2} u(x,t) \right| \leq \frac{1}{2d(t-s)} + \int_{-\infty}^{\infty} \frac{4(x-y)^2}{[4d(t-s)]^2} e^{-\frac{(x-y)^2}{4\pi d(t-s)}} \, dy + M_2 M_4 \int_{s}^{t} \int_{-\infty}^{\infty} \frac{2|y|}{4d(t-r)} \frac{1}{\sqrt{4\pi d(t-r)}} e^{-\frac{(x-y)^2}{4\pi d(t-r)}} \, dydr \leq \frac{1}{d(t-s)} + M_2 M_4 \frac{2\sqrt{t-s}}{\sqrt{\pi d}} \leq \frac{1}{d} + \frac{4M_2 M_4}{\sqrt{\pi d}} \equiv M_3.$$
where \( M_4 = \max \{|\partial_t g(u,v)| + \partial_2 g(u,v) S'(w) : u,v \in [0,1], w \in [S(0), S(1)]\} \).

By the arbitrariness of \( s \geq 2\tau + 1 \), we have \( |\partial^2_{x^2} u(x,t)| \leq M_3 \) for any \( x \in \mathbb{R} \) and any \( t \geq 2(\tau + 1) \). Since \( u(x,t) \) satisfies

\[
\frac{\partial}{\partial t} u(x,t) = \frac{\partial^2}{\partial x^2} u(x,t) + g(u(x,t), (h + S(u))(x,t)), \quad x \in \mathbb{R}, \; t > \tau,
\]

it follows that for any \( x \in \mathbb{R} \) and any \( t \geq 2(\tau + 1) \),

\[
\left| \frac{\partial}{\partial t} u(x,t) \right| \leq M_3 + \max_{u,v \in [0,1]} |g(u,v)| \equiv M_4.
\]

Constants \( M_1, M_2 \) and \( M_3 \) are independent of \( x \in \mathbb{R}, t \geq 2(\tau + 1) \) and \( \varphi \in C_{[0,1]} \).

Now we estimate \( \frac{\partial^2}{\partial x^2} u(x,t) \) and \( \frac{\partial^2}{\partial x^2} v(x,t) \). Notice that \( \frac{\partial}{\partial t} u(x,t) \leq M_2 \) for all \( x \in \mathbb{R} \) and \( t \geq \tau + 1 \). By (1.17), we have, for \( t \geq 2\tau + 1 \), that

\[
\frac{\partial}{\partial x} u(x,t) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{4\pi d(t-2\tau-1)}} e^{-\frac{(x-y)^2}{2\pi d(t-2\tau-1)}} \frac{\partial}{\partial x} u(x-y, 2\tau + 1) \, dy
\]

\[
+ \int_{2\tau + 1}^t \int_{-\infty}^{\infty} \frac{1}{\sqrt{4\pi d(t-r)}} e^{-\frac{(x-y)^2}{2\pi d(t-r)}} \frac{\partial}{\partial x} \Phi(u,t) (x-y) \, dy \, dr,
\]

which implies that \( \frac{\partial}{\partial x} u(x,t) \) is a solution on \( t \geq 2\tau + 1 \) of the following equation:

\[
\frac{\partial}{\partial t} v(x,t) = d \Delta v(x,t) + \partial_t g(u(x,t), (h + S(u))(x,t)) v(x,t)
\]

\[
+ \partial_2 g(u(x,t), (h + S(u))(x,t)) (h + S'(u))(x,t),
\]

with initial value \( v(x,2\tau + 1 + s) = \frac{\partial}{\partial x} u(x,2\tau + 1 + s), \quad s \in [-\tau, 0] \). Applying a similar argument as in the previous part and combining the continuous second derivatives of \( g(u,v) \) and \( S(u) \), we can find a positive constant \( M_5 \), which is independent of \( x, t \) and \( \varphi \in C_{[0,1]} \), such that \( \left| \frac{\partial^2}{\partial x^2} u(x,t) \right| \leq M_5 \) and \( \left| \frac{\partial^2}{\partial x^2} v(x,t) \right| \leq M_5 \) for any \( x \in \mathbb{R} \) and \( t \geq 3(\tau + 1) \). Similarly, we can find a positive constant \( M_6 \), independent of \( x, t \) and \( \varphi \in C_{[0,1]} \), such that \( \left| \frac{\partial^2}{\partial x \partial t} u(x,t) \right| \leq M_6 \) and \( \left| \frac{\partial^2}{\partial x \partial t} v(x,t) \right| \leq M_6 \) for any \( x \in \mathbb{R} \) and \( t \geq 3(\tau + 1) \).

Let \( M = \max\{M_1, M_2, M_3, M_4, M_5, M_6\} \). The proof is complete.

\[\Box\]

**Theorem 4.4.** There exists an entire solution \( \Phi(x,t) \) of (1.1) such that

\[
u(x,t) \leq \Phi(x,t) \leq \nu(x,t), \quad (x,t) \in \mathbb{R} \times (-\infty, T],
\]

where \( \nu(x,t) \) and \( \nu(x,t) \) are given in Lemma 1.1 and Lemma 4.2 respectively. Moreover,

(i) \( \frac{\partial}{\partial t} \Phi(x,t) > 0 \) on \( \mathbb{R}^2 \);

(ii) \( \Phi(x,t) = \Phi(-x,t) \) on \( \mathbb{R}^2 \);

(iii) \( \lim_{t \to -\infty} \|\Phi(\cdot, t) - 1\|_{L^\infty(\mathbb{R})} = 0 \) and for any \( a > 0 \),

\[
\lim_{t \to -\infty} \|\Phi(\cdot, t)\|_{L^\infty([-a, a])} = 0;
\]
(iv) For each \( a \in \mathbb{R} \), \( \lim_{|x| \to \infty} \| \Phi(x, \cdot) - 1 \|_{L^\infty[a, +\infty)} = 0 \); 

We note that it is easy to prove that for any \( x \), for all \( \epsilon > 0 \), \( u \in (x, T - n + s) \), \( (x, s) \in \mathbb{R} \times [-\tau, 0] \), \( n \in \mathbb{N} \). Then \( u_n(x, s) = u(x, T - n + s) = u(x, T - (n + 1) + s + 1) \leq u_{n+1}(x, 1 + s) \), from which \( u_n(x, n + s) \leq u_{n+1}(x, n + 1 + s) \) follows. On the other hand, we see \( u(x, T + s) \leq u_n(x, n + s) \leq \pi(x, T + s) \). Thus, by Proposition 4.3 there exists a function \( \varphi^* \in C_{[0, 1]} \) to which \( u_n(x, n + s) \) converges uniformly. Therefore, \( \Phi(x, t) := u(x, t - T; \varphi^*) \) is defined for all \( t \geq T - \tau \).

To prove the continuation of a solution backward in time from \( \varphi^* \), we show that given \( T' > 0 \), there is a function \( \varphi^{T'} \in C_{[0, 1]} \) such that \( \varphi^*(x, s) = u\left(x, T' + s; \varphi^{T'}\right) \).

Fix an integer \( n_1 > T' + \tau \). For \( n \geq n_1 \), put

\[
w_n(x, s) = u_n(x, n - T' + s) = u(x, n - T' + s; \varphi^*_n),
\]

where \( \varphi^*_n \) is defined by (4.18). Then \( u_n(x, n + s) = u(x, T' + s; w_n) \) and

\[
w_{n+1}(x, s) = u_{n+1}(x, n + 1 - T' + s) \geq u_n(x, n - T' + s) = w_n(x, s).
\]

Thus, there is a \( \varphi^{T'} \in C_{[0, 1]} \) such that \( \lim_{n \to \infty} \| w_n - \varphi^{T'} \|_{L^\infty(\mathbb{R} \times [-\tau, 0])} = 0 \). Here we note that it is easy to prove that for any \( \varphi_1, \varphi_2 \in C_{[0, 1]} \),

\[
\| u(\cdot, t + s; \varphi_1) - u(\cdot, t + s; \varphi_2) \|_{L^\infty(\mathbb{R} \times [-\tau, 0])} \leq e^{(L_1 + L_2)t} \| \varphi_1 - \varphi_2 \|_{L^\infty(\mathbb{R} \times [-\tau, 0])},
\]

where

\[
L_1 = \max_{u \in [0, 1], v \in [S(0), S(1)]} | \partial_1 g(u, v) |
\]

and

\[
L_2 = \max_{u \in [0, 1], v \in [S(0), S(1)]} \max_{v \in [S(0), S(1)]} \partial_2 g(u, v).
\]

It follows that \( u_n(x, n + s) = u(x, T' + s; w_n) \), \( \lim_{n \to \infty} \| w_n - \varphi^{T'} \|_{L^\infty(\mathbb{R} \times [-\tau, 0])} = 0 \), and we see that \( \varphi^*(x, s) = u\left(x, T' + s; \varphi^{T'}\right) \). Hence, \( \Phi(x, t) \) is defined for all \( t \in \mathbb{R} \).

Now we show that \(\frac{\partial}{\partial t} \Phi(x, t) > 0 \) on \( \mathbb{R}^2 \). Since \( u(x, t) \) is a subsolution of (1.1), then \( u_n(x, t) = u(x, t; \varphi^*_n) > u(x, T - n + t) \) for all \( \mathbb{R} \times [-\tau, -T + n] \). Again since for any \( \epsilon > 0 \), \( u(\cdot, t + \epsilon) \geq u(\cdot, t) \) on \( \mathbb{R}^2 \), it follows that \( u(x, \epsilon + s; \varphi^*_n) \geq \varphi^*_n(x, s) \) for all \( n, s \in \mathbb{R} \times [-\tau, 0] \). By comparison and the uniqueness of solutions, we have \( u_n(x, t + \epsilon) = u(x, t; u(\cdot, \epsilon + s; \varphi^*_n)) \geq u_n(x, t) \) for any \( x \in \mathbb{R} \times (0, +\infty) \). It follows from the arbitrariness of \( \epsilon \) that \( u_n(x, t) \) is increasing in \( t \). Consequently, it is easy to obtain \(\frac{\partial}{\partial t} \Phi(x, t) \geq 0 \) on \( \mathbb{R}^2 \). Since \(\frac{\partial}{\partial t} \Phi(x, t) \) is a solution of the equation

\[
\frac{\partial}{\partial t} v(x, t) = d\Delta v(x, t) + \partial_1 g(u(x, t), (h \ast S(u))(x, t)) v(x, t) + \partial_2 g(u(x, t), (h \ast S(u))(x, t)) (h \ast S'(u)) v(x, t),
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Lemma 5.2. Let \( \beta_0 \) be as in (1.9). Then there exists \( T_1 \in \mathbb{R} \) such that
\[
M(t) = \inf_{x \in \mathbb{R}, s \in [-\tau, 0]} \Phi(x, t + s) < \beta_0,
\]
\( \forall t \leq T_1 \).

Proof. Let \( \beta^* < \beta_0 \) be a constant such that \( g(u, S(u)) > 0 \) in \( u \in [\beta^*, 1] \). Denote by \( \xi(\cdot) \) the solution of \( \xi'(t) = g(\xi(t), \int^t_0 \int^\infty_h(y, s) S(\xi(t - s)) dyds) \) with initial value \( \xi(s) = \beta^*, s \in [-\tau, 0] \). Then by Smith (37 Corollary 2.2, p82), \( \xi'(\cdot) \geq 0 \) in \( (0, \infty) \), and hence, \( \xi(\cdot) = 1 \).

We argue by contradiction. Assuming that the assertion were not true, there would exist a sequence \( \{t_j\}_{j=1}^\infty \) such that \( \lim_{j \to \infty} t_j = -\infty \) and \( M(t_j) > \beta^* \) for all \( j \). By comparison, \( M(t) \geq \inf_{s \in [-\tau, 0]} \xi(t - t_j + s) \) for all \( t > t_j \). Fixing \( t \) and letting \( j \to \infty \) gives \( M(t) \geq \lim_{j \to \infty} \inf_{s \in [-\tau, 0]} \xi(t - t_j + s) = \xi(\infty) = 1 \), which is a contradiction. This completes the proof. \( \square \)

From (1.8) and (5.1), the following functions are well-defined for all \( t \leq T_2 = \min \{T_0, T_1\} \):
\[
\tilde{l}(t) = \min \left\{ x : \Phi(x, t + s) = \beta_0, s \in [-\tau, 0] \right\},
\]
\[
\tilde{r}(t) = \max \left\{ x : \Phi(x, t + s) = \beta_0, s \in [-\tau, 0] \right\},
\]
\[
q(t) = \frac{1}{2} \left[ \tilde{r}(t) - \tilde{l}(t) \right],
\]
\[
m(t) = \frac{1}{2} \left[ \tilde{r}(t) + \tilde{l}(t) \right].
\]

Lemma 5.2. \( \lim_{t \to -\infty} q(t) = \infty \).

Proof. Assuming that the assertion of the lemma were not true, then there exists an \( L' > 0 \) and a sequence \( \{t_j\}_{j=1}^\infty \) such that \( \lim_{j \to \infty} t_j = -\infty \) and \( 0 < \tilde{r}(t_j) - \tilde{l}(t_j) < L' \) for each integer \( j > 0 \). Define \( \varphi(L'; y, s) \)
\[
\begin{align*}
\varphi(L'; y, s) &= 0 \quad \text{when} \quad (y, s) \in [-L', L'] \times [-\tau, 0], \\
\beta_0 \quad \text{when} \quad (y, s) \in ((-\infty, - (L' + 1)] \cup [L' + 1, \infty)) \times [-\tau, 0], \\
-(y + L') \beta_0 \quad \text{when} \quad (y, s) \in [- (L' + 1), -L'] \times [-\tau, 0], \\
(y - L') \beta_0 \quad \text{when} \quad (y, s) \in [L', L' + 1] \times [-\tau, 0].
\end{align*}
\]
Denote by $u(x,t;\varphi)$ the solution of (1.1) with initial $\varphi$. Since $c > 0$, by the following Lemma 5.3 there exists a constant $T(L')$ such that $\beta_0 \leq u(x,t;\varphi) \leq 1$ for any $t \geq T(L')$. Comparing $\varphi(L';s)$ with $\Phi(m(t_j) + t, t_j + s)$, we have $\varphi(L';s) \leq \Phi(m(t_j) + t, t_j + s)$ for $s \in [-\tau, 0]$. Thus, by comparison, we have $\Phi(m(t_j) + t, t_j + t) \geq u(\cdot, t;\varphi)$ for all $t > 0$. This implies that $M(t_j + T(L')) \geq \beta_0$ for all integer $j \geq 0$, which contradicts (5.1). The proof is complete. \hfill $\square$

Let
\[
\alpha_1 = \min \{ u \mid g(u, S(u)) = 0 , u \in (0,1) \},
\]
\[
\beta_1 = \max \{ u \mid g(u, S(u)) = 0 , u \in (0,1) \}
\]
and
\[
C^a_{[0,1]} = \left\{ \varphi \in C_{[0,1]} \mid \varphi \leq \frac{\alpha_0 + \alpha_1}{2} \text{ in } (-\infty,-a] \times [-\tau,0],
\right. \\
\left. \varphi \geq \beta_0 \text{ in } [0,\infty) \times [-\tau,0] \right\}.
\]

Obviously, $\alpha_0 < \alpha_1 \leq \beta_1 < \beta_0$. The following lemma was proved by Wang et al. [42]; see also Chen [7, Theorem 3.1] and Smith and Zhao [38, Theorem 3.3]. We note that though Theorem 3.1 in Chen [7] and Theorem 3.3 in Smith and Zhao [38] require that the quasimonotone condition holds on a larger domain than $[0,1] \times [S(0), S(1)]$ and $[0,1]^2$, respectively (see [7] (D3), p. 152 and [38] (H1), p. 515)), their results still hold under (F1) if supersolutions and subsolutions are chosen as in Wang et al. [42]. That is, take the smaller between 1 and the supersolution in Chen [7] and Smith and Zhao [38] (or the larger between 0 and the subsolution) as a new supersolution (a new subsolution).

**Lemma 5.3.** There exists a positive constant $\nu$ such that for any $\varphi \in C_{[0,1]}$ with
\[
\liminf_{x \to -\infty} \min_{s \in [-\tau,0]} \varphi(x,s) > \beta_1 \quad \text{and} \quad \limsup_{x \to -\infty} \max_{s \in [-\tau,0]} \varphi(x,s) < \alpha_1,
\]
the solution of (1.1) with initial value $\varphi$ satisfies
\[
|u(x,t;\varphi) - \phi(x + ct + \xi)| \leq Ke^{\nu t} \quad \forall x \in \mathbb{R}, \ t \geq 0,
\]
for some $K = K(\varphi) > 0$ and some $\xi = \xi(\varphi) \in \mathbb{R}$.

Now we consider $\varphi \in C^a_{[0,1]}$. Carefully observe the proof of Theorem 3.1 in [7], the proof of Theorem 3.3 in [38] and the proof of Theorem 4.5 in [42]. We can find two constants $K' > 0$ and $\xi_0 > 0$ such that for all $\varphi \in C^a_{[0,1]}$, $K(\varphi) \leq K'$ and $|\xi(\varphi)| \leq \xi_0$. Let $K_0 = \max\{\xi_0, K'\}$.

**Lemma 5.4.** There exist positive constants $\nu$ and $K_0$ such that for any $\varphi \in C^a_{[0,1]}$, the solution of (1.1) with initial value $\varphi$ satisfies
\[
|u(x,t;\varphi) - \phi(x + ct + \xi)| \leq K_0 e^{\nu t} \quad \forall x \in \mathbb{R}, \ t \geq 0
\]
for some $\xi = \xi(\varphi) \in \mathbb{R}$ satisfying $|\xi| \leq K_0$. 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
From (15), \( l(t) \leq \tilde{l}(t) < \hat{r}(t) \leq r(t) \). Hence, for all \( t \ll -1 \),
\[
\begin{align*}
\tilde{\Phi}(m(t) + x, t + s) & \geq \beta_0 \quad \text{if } |x| \geq q(t), \\
\hat{\Phi}(m(t) + x, t + s) & \leq \alpha_0 \quad \text{if } |x| \leq q(t) - a.
\end{align*}
\]
Since \( q(t) \to \infty \) as \( t \to -\infty \), there exists \( T_3 \leq T_2 \) such that for any \( t \leq T_3 \),
\( m(t) \in \left[ \min \{ l(t) + a, r(t) - a \} \right. \), \( \max \{ l(t) + a, r(t) - a \} \).

Assume \( r \leq T_3 \). Define
\[
\psi(x, s) = \begin{cases} 
\tilde{\Phi}(x + m(r), r + s) & \text{if } x \geq -q(r) + a, \\
\hat{\Phi}(-q(r) + a + m(r), r + s) & \text{if } x < -q(r) + a, \\
-\frac{\pi_2(0)}{6(M+1)} \cos \left( \sqrt{\frac{6(M+1)}{\eta}} (x + q(r) - a) \right) & \text{if } x < -q(r) + a, \\
+\frac{\pi_1(s)}{6(M+1)} \sin \left( \sqrt{\frac{6(M+1)}{\eta}} (x + q(r) - a) \right) & \text{if } x \geq -q(r) + a,
\end{cases}
\]
where \( s \in [-\tau, 0] \), \( \eta = \min \{ \alpha_1 - \alpha_0, \min_{s \in [-\tau, 0]} \tilde{\Phi}(-q(r) + a + m(r), r + s) \} \), \( M \) is defined in Proposition 4.3 and
\[
\pi_1(s) = \frac{\partial}{\partial x} \tilde{\Phi}(x + m(r), r + s) \bigg|_{x=-q(r)+a}, \quad \pi_2(0) = \frac{\partial^2}{\partial x^2} \tilde{\Phi}(x + m(r), r) \bigg|_{x=-q(r)+a}.
\]

**Lemma 5.5.** Assume that \( h(x, t) = J(x)\delta(t - \tau) \); then for every \( \varepsilon \) and \( H > 0 \), there exists \( r_0(\varepsilon, H) < 0 \) such that for any \( r \leq r_0 \),
\[
(5.2) \quad \left| u(x, t; \psi) - \tilde{\Phi}(x + m(r), r + t) \right| \leq \varepsilon \quad \forall \ t \in [0, H], \ x \in [0, \infty).
\]

**Proof.** Now let \( u(x, t; \psi) \) be the solution of (1.1) with initial value \( \psi(x, s) \). By Pazy [30] Theorem 3.1, \( v(t) = \int_0^t T(t - s) F(u_s) \) is Hölder continuous on \( [0, +\infty) \).
Also, since \( \psi(x, 0) \in D(d\Delta X) \), then \( T(t) \psi(0) \) is Lipschitz continuous on \( [0, +\infty) \).
Thus, \( u(x, t; \psi) \) is Hölder continuous on \( [0, +\infty) \). In view of the Lipschitz continuity of \( \psi \) on \( [-\tau, 0] \), it follows that \( f(t) = F(u_t) \) is Hölder continuous on \( [0, +\infty) \).
Following Pazy [30] Corollary 3.3, \( u(x, t; \psi) \) is a classical solution of (1.1) in \( (0, +\infty) \).

Let \( v(x, t) = u(x, t; \psi) - \tilde{\Phi}(x + m(r), r + t) \). Then \( v(x, s) = 0 \) for all \( (x, s) \in (-q(r) + a, +\infty) \times [-\tau, 0] \) and
\[
\frac{\partial}{\partial t} v(x, t) - d\Delta v(x, t) = g(u(x, t), \{ h * S(u) \}(x, t)) \\
- g(\tilde{\Phi}(x + m(r), r + t), \{ h * S(\tilde{\Phi}) \}(x + m(r), r + t)).
\]

Take \( v^-(x, t) = \max \{-v(x, t), 0\} \) and \( v^+(x, t) = \max \{v(x, t), 0\} \). Then
\[
\frac{\partial}{\partial t} v(x, t) - d\Delta v(x, t) \leq L_1 v(x, t) + L_2 \int_{-\infty}^{\infty} J(y) v^+(x - y, t - \tau) dy
\]
if \( v(x, t) > 0 \) and
\[
\frac{\partial}{\partial t} v(x, t) - d\Delta v \geq L_1 v(x, t) - L_2 \int_{-\infty}^{\infty} J(y) v^-(x - y, t - \tau) dy
\]
if \( v(x, t) < 0 \), where \( L_1 \) and \( L_2 \) are defined in Theorem 4.4.
Given $\varepsilon > 0$ and $H > 0$, there exists $m \in \mathbb{N}$ such that $m - 1 = \lceil \frac{H}{\varepsilon} \rceil$. Define $v^+_j(x, t) = v^+(x, t + (j - 1)\tau)$ for any $(x, t) \in \mathbb{R} \times [-\tau, \infty)$ and $j \in \{1, \ldots, m\}$. Let $w(x, t; v^+_j(x, 0))$ be a solution of the following linear equation:

$$
\frac{\partial}{\partial t} w(x, t) - d\Delta w(x, t) = L_1 w(x, t) + L_2 \int_{-\infty}^{\infty} J(y) v^+_j(x - y, t - \tau) dy, \quad t \geq 0,
$$

with initial value $v^+_j(x, 0)$. It is easy to see that $v^+_j(x, t)$ is a subsolution of (5.3) on $(x, t) \in \mathbb{R} \times [0, \infty)$. Then for $(x, t) \in \mathbb{R} \times [0, \tau)$,

$$
v^+_j(x, t) \leq w(x, t; v^+_j(x, 0)) = e^{L_1 t} \int_{-\infty}^{\infty} \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} v^+_j(y, 0) dy
+ \int_0^t e^{L_1 (t-s)} \int_{-\infty}^{\infty} \frac{1}{\sqrt{4\pi (t-s)}} e^{-\frac{(x-y)^2}{4(t-s)}} L_2 \int_{-\infty}^{\infty} J(z) v^+_j(y - z, s - \tau) dy dz ds
\leq e^{L_1 \tau} \int_{-\infty}^{\infty} \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}} v^+_j(y, 0) dy
+ L_2 e^{L_1 \tau} \int_0^t \int_{-\infty}^{\infty} \frac{1}{\sqrt{4\pi (t-s)}} e^{-\frac{(x-y)^2}{4(t-s)}} L_2 \int_{-\infty}^{\infty} J(z) v^+_j(y - z, s - \tau) dy dz ds.
$$

Claim. For given $\varepsilon_j > 0$ and $Y_j \leq 0$, there exists $Y_{j-1}$ with $Y_{j-1} < Y_j$ which is only dependent on $\varepsilon_j$ and $Y_j$, such that if

$$
v^+_j(x, t) \leq \varepsilon_{j-1} := \min \{ \varepsilon_j / (5e^{L_1 \tau}), \varepsilon_j / (5L_2 \tau e^{L_1 \tau}) \}
$$

for any $(x, t) \in [Y_{j-1}, +\infty) \times [0, \tau)$, there are $v^+_j(x, t) \leq \varepsilon_j$ for any $(x, t) \in [Y_j, +\infty) \times [0, \tau]$.

We now prove the Claim. Take $Z_j > 0$ such that

$$
L_2 \tau e^{L_1 \tau} \int_{-\infty}^{-Z_j} + \int_{Z_j}^{+\infty} J(y) dy \leq \varepsilon_j / 5.
$$

Furthermore, take $\Lambda_{1j} > 0$ and $\Lambda_{2j} > 0$ such that $\int_{-\infty}^{+\infty} e^{-y^2} dy \leq \frac{\sqrt{\pi} e^\tau}{\sqrt{4\pi \tau}}$ and $\int_{-\infty}^{Z_j} e^{-y^2} dy \leq \frac{\sqrt{\pi} e^\tau}{5L_2 \tau e^{L_1 \tau}}$. Let $Y_{j-1} = \min \{ Y_j - \Lambda_{1j}, Y_j - Z_j - \Lambda_{2j} \}$. Notice that $v^+_j(x, t - \tau) = v^+_j(x, t)$. If $v^+_{j-1}(x, t) \leq \varepsilon_{j-1}$ for any $(x, t) \in [Y_{j-1}, +\infty) \times [0, \tau]$,
then for any \((x, t) \in [Y_j, +\infty) \times [0, \tau]\), we have

\[
e^{L_1 \tau} \int_{Y_j-1}^{\infty} \frac{1}{\sqrt{4\pi t}} e^{-\frac{(y-\mu)^2}{4\tau t}} v_j^+ (y, 0) \, dy \leq \varepsilon_j / 5,
\]

\[
e^{L_1 \tau} \int_{-\infty}^{Y_j-1} \frac{1}{\sqrt{4\pi t}} e^{-\frac{(y-\mu)^2}{4\tau t}} v_j^+ (y, 0) \, dy \leq e^{L_1 \tau} \int_{x-Y_j-1}^{+\infty} \frac{1}{\sqrt{4\pi t}} e^{-\frac{y^2}{4\tau t}} \, dy
\]

\[
\leq e^{L_1 \tau} \int_{Y_j-Y_j-1}^{+\infty} \frac{1}{\sqrt{4\pi t}} e^{-\frac{y^2}{4\tau t}} \, dy = \frac{e^{L_1 \tau}}{\sqrt{\pi}} \int_{Y_j-Y_j-1}^{+\infty} e^{-y^2} \, dy
\]

\[
= \frac{e^{L_1 \tau}}{\sqrt{\pi}} \int_{-y}^{+\infty} e^{-y^2} \, dy \leq \frac{e^{L_1 \tau}}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-y^2} \, dy \leq \varepsilon_j / 5,
\]

\[
L_2 e^{L_1 \tau} \int_{0}^{t} \int_{-\infty}^{Z_j} \frac{1}{\sqrt{4\pi (t-s)}} e^{-\frac{(y-\mu)^2}{4\tau (t-s)}} \left[ \int_{-\infty}^{Z_j} J (z) v_j^+ (y-z, s-\tau) \, dz \right] dy \, ds
\]

\[
\leq L_2 \tau e^{L_1 \tau} \int_{0}^{t} \int_{-\infty}^{Z_j} J (z) \, dz \leq \varepsilon_j / 5,
\]

\[
L_2 e^{L_1 \tau} \int_{0}^{t} \int_{Y_j-Y_j-1}^{Z_j} \frac{1}{\sqrt{4\pi (t-s)}} e^{-\frac{(y-\mu)^2}{4\tau (t-s)}} \int_{-Z_j}^{Z_j} J (z) v_j^+ (y-z, s-\tau) \, dz \, dy \, ds
\]

\[
\leq L_2 \tau e^{L_1 \tau} \int_{0}^{t} \int_{x-Y_j-1}^{Z_j} \frac{1}{\sqrt{4\pi (t-s)}} e^{-\frac{y^2}{4\tau (t-s)}} \, dy \, ds
\]

\[
\leq \frac{L_2 \tau e^{L_1 \tau}}{\sqrt{\pi}} \int_{x-Y_j-1}^{+\infty} e^{-y^2} \, dy \leq \frac{L_2 \tau e^{L_1 \tau}}{\sqrt{\pi}} \int_{1/5}^{+\infty} e^{-y^2} \, dy \leq \varepsilon_j / 5,
\]

which implies that for any \((x, t) \in [Y_j, +\infty) \times [0, \tau]\), \(v_j^+ (x, t) \leq \varepsilon_j\). Obviously, \(\varepsilon_{j-1}\) and \(Y_j-1\) are only dependent on \(\varepsilon_j\) and \(Y_j\). Thus, we have shown the Claim.

Let \(\varepsilon_m = \varepsilon\) and \(Y_m = 0\). According to the Claim, we can choose \(\{\varepsilon_j, Y_j\} : j = 1, \cdots, m\) such that when \(v_j^+ (x, t) \leq \varepsilon_{j-1} < \varepsilon_j\) for any \((x, t) \in [Y_j-1, +\infty) \times [0, \tau]\), there are \(v_j^+ (x, t) \leq \varepsilon_j\) for any \((x, t) \in [Y_j, +\infty) \times [0, \tau]\). In view of \(Y_j-1 < Y_j, \varepsilon_j < \varepsilon\) and \(v_j^+ (x, t) = v_j^+ (x, t + (j-1) \tau) = v^+ (x, t + (j-1) \tau)\), then if \(v_j^+ (x, t) \leq \varepsilon_1 \leq \varepsilon\) for any \((x, t) \in [Y_j, +\infty) \times [0, \tau]\), there is \(v^+ (x, t) \leq \varepsilon\) for any \((x, t) \in [0, +\infty) \times [0, m\tau]\). By virtue of \(H \in ([m-1] \tau, m\tau]\), for any \((x, t) \in [0, +\infty) \times [0, H]\), there is \(v^+ (x, t) \leq \varepsilon\) if \(v_j^+ (x, t) \leq \varepsilon_1 \leq \varepsilon\) for any \((x, t) \in [Y_1, +\infty) \times [0, \tau]\). To complete the proof of the lemma, we only need to show that there exists \(\overline{\varepsilon} (\varepsilon, H) < 0\) such that
for any \( r \leq \tau_1 \), \( v^+_r(x,t) = v^+(x,t) \leq \varepsilon_1 \) for any \((x,t) \in [Y_1, +\infty) \times [0, \tau]\). Define \( v^+_0(x,t) = v^+(x,t - \tau) \) for \((x,t) \in \mathbb{R} \times [0, \tau]\). Then by a similar argument, we can choose \( \varepsilon_0 < \varepsilon_1 \) and \( Y_0 < Y_1 \) such that when \( v^+_0(x,t) \leq \varepsilon_0 \) for \((x,t) \in [Y_0, \infty) \times [0, \tau]\), there are \( v^+_0(x,t) = v^+(x,t) \leq \varepsilon_1 \) for any \((x,t) \in [Y_1, +\infty) \times [0, \tau]\). Note that \( \varepsilon_0 \) and \( Y_0 \) are only dependent on \( \varepsilon \) and \( H \). It is sufficient to set \( \tau_1(\varepsilon, H) < T_3 \) such that for any \( r \leq \tau_1 \), \(-q(r) + a \leq Y_0\).

Similarly, we can choose \( \tau_2(\varepsilon,H) < T_3 \) such that for any \( r \leq \tau_2 \), there is \( v^-(x,t) \leq \varepsilon \) for any \( x \in [0, \infty) \) and \( t \in [0,H] \). Let \( r_0(\varepsilon, H) = \min\{\tau_1, \tau_2\} \). This completes the proof. □

**Lemma 5.6.** Assume that \( h(x,t) = J(x)\delta(t-\tau) \); then

\[
\lim_{t \to -\infty} \inf_{z \in \mathbb{R}, r \in \mathbb{R}} \| \Phi(z + \cdot, t + \cdot) - \Phi(\cdot, r + \cdot) \|_{L^\infty(\mathbb{R} \times [-\tau, 0])} = 0.
\]

**Proof.** Let \( \varepsilon > 0 \) be arbitrarily small. Set \( H \) such that \( K_0 e^{-\nu H e^\nu r} = \varepsilon \). Choose \( r_1 \ll -1 \) such that \( \phi((-q(r) + cH + 2K_0) < \varepsilon \) for \( r \leq r_1 \). Fix any \( r \leq \min\{r_0, r_1\} \). By Lemma 5.5

\[
|u(x, H + s; \psi) - \Phi(x + m(r), r + H + s)| \leq \varepsilon \quad \forall \ x \geq 0, \ s \in [-\tau, 0].
\]

On the other hand, for some \( \xi \in [-K_0, K_0] \),

\[
|u(x, H + s; \psi) - \phi(x - q(r) + cH + cs - \xi)| \leq K_0 e^{-\nu(H + s)} \leq \varepsilon
\]

\( \forall \ x \in \mathbb{R}, \ s \in [-\tau, 0], \)

since \( \psi(x, s) \leq \frac{\beta_0 + \beta s}{m_0} \) for all \( x \leq q(r) - a \) and \( s \in [-\tau, 0] \), \( \psi(x, s) \geq \beta_0 \) for all \( x \geq q(r) \) and \( s \in [-\tau, 0] \). Thus, for all \( x \geq 0 \) and \( s \in [-\tau, 0] \),

\[
|\Phi(x + m(r), r + H + s) - \phi(x - q(r) + cH + cs - \xi)| \leq 2\varepsilon.
\]

Similarly, for all \( x \leq 0 \) and \( s \in [-\tau, 0] \), there exists some \( \eta \in [-K_0, K_0] \) such that

\[
|\Phi(x + m(r), r + H + s) - \phi(-x - q(r) + cH + cs - \eta)| \leq 2\varepsilon.
\]

Since

\[
\phi(x - q(r) + cH + cs - \xi) = \phi((-x - (\xi - \eta)/2 - q(r) + cH + cs - (\xi + \eta)/2),
\]

\[
\phi(-x - q(r) + cH + cs - \eta) = \phi((-x - (\xi - \eta)/2 - q(r) + cH + cs - (\xi + \eta)/2),
\]

then for \( x \geq -(\xi - \eta)/2 \) and \( s \in [-\tau, 0] \),

\[
|\Phi(x + (\xi - \eta)/2 + m(r), r + H + s) - \phi(x - q(r) + cH + cs - (\xi + \eta)/2)| \leq 2\varepsilon,
\]

and for \( x \leq -(\xi - \eta)/2 \) and \( s \in [-\tau, 0] \),

\[
|\Phi(x + (\xi - \eta)/2 + m(r), r + H + s) - \phi(-x - q(r) + cH + cs - (\xi + \eta)/2)| \leq 2\varepsilon.
\]

If \( -(\xi - \eta)/2 \geq 0 \), then for \( x \in [0, -(\xi - \eta)/2] \subset [0, K_0] \) and \( s \in [-\tau, 0] \),

\[
|\phi(x - q(r) + cH + cs - (\xi + \eta)/2) - \phi(-x - q(r) + cH + cs - (\xi + \eta)/2)| \leq \varepsilon.
\]
Thus, for \( x \geq 0 \) and \( s \in [-\tau, 0] \),
\[
\left| \Phi \left( x + (\xi - \eta) / 2 + m(r), r + H + s \right) - \phi (x - q(r) + cH + cs - (\xi + \eta) / 2) \right| \leq 3\varepsilon
\]
and
\[
\left| \Phi \left( x + (\xi - \eta) / 2 + m(r), r + H + s \right) - [\phi (x - q(r) + cH + cs - (\xi + \eta) / 2) + \phi (-x - q(r) + cH + cs - (\xi + \eta) / 2)] \right| \leq 4\varepsilon.
\]

Obviously, for \( x \leq 0 \) and \( s \in [-\tau, 0] \),
\[
\left| \Phi \left( x + (\xi - \eta) / 2 + m(r), r + H + s \right) - \phi (x - q(r) + cH + cs - (\xi + \eta) / 2) \right| \leq 3\varepsilon
\]
and
\[
\left| \Phi \left( x + (\xi - \eta) / 2 + m(r), r + H + s \right) - [\phi (x - q(r) + cH + cs - (\xi + \eta) / 2) + \phi (-x - q(r) + cH + cs - (\xi + \eta) / 2)] \right| \leq 4\varepsilon.
\]

For the case \(- (\xi - \eta) / 2 < 0\), we can obtain the same estimates. Define \( \theta = \theta(r,s) \) with \( p(\theta + s) = -q(r) + cH + cs - (\xi + \eta) / 2 \), where \( p \) is defined in Section 4. It is obvious that \( \theta \to -\infty \) is uniform for \( s \in [-\tau, 0] \) as \( r \to -\infty \). Again since \( 0 < p(t) - ct - \omega \to 0 \) as \( t \to -\infty \), there exists \( r_2 < \min \{ r_0, r_1 \} \) such that for \( r \leq r_2 \) and \( s \in [-\tau, 0] \), \( \theta < T \) and
\[
|\phi (\pm x - q(r) + cH + cs - (\xi + \eta) / 2) - \phi (\pm x + c\theta + cs + \omega)| = |\phi (\pm x + p(\theta + s)) - \phi (\pm x + c\theta + cs + \omega)| \leq \varepsilon,
\]
which implies that
\[
\left| \Phi \left( x + (\xi - \eta) / 2 + m(r), r + H + s \right) - \max \{ \phi (x + c\theta + cs + \omega), \phi (-x + c\theta + cs + \omega) \} \right| \leq 4\varepsilon
\]
and
\[
\left| \Phi \left( x + (\xi - \eta) / 2 + m(r), r + H + s \right) - [\phi (x + p(\theta + s)) + \phi (-x + p(\theta + s))] \right| \leq 5\varepsilon.
\]

Therefore, for any \( r \leq r_2 \) and \( s \in [-\tau, 0] \),
\[
\left| \Phi \left( x + (\xi - \eta) / 2 + m(r), r + H + s \right) - \Phi (x, \theta + s) \right| \leq 5\varepsilon.
\]

Consequently, for any \( t \leq r_2 + H \), we have
\[
\inf_{z \in \mathbb{R}, \theta \leq 0} \left\| \Phi (z + \cdot, t + \cdot) - \Phi (\cdot, \theta + \cdot) \right\|_{L^\infty(\mathbb{R} \times [-\tau, 0])} \leq 5\varepsilon.
\]

Hence,
\[
\sup_{t \leq r_2 + H} \inf_{z \in \mathbb{R}, \theta \leq 0} \left\| \Phi (z + \cdot, t + \cdot) - \Phi (\cdot, \theta + \cdot) \right\|_{L^\infty(\mathbb{R} \times [-\tau, 0])} \leq 5\varepsilon,
\]
which implies that the assertion of the lemma holds. The proof is complete. \( \square \)
Lemma 5.7. There exist constants \( \delta_0 > 0, \varrho_0 > 0 \) and \( \sigma_0 > 0 \) such that for any \( r \in \mathbb{R}, \delta \in (0, \delta_0) \) and \( \sigma \geq \sigma_0 \),

\[
W^+ (x, t) = \min \{ \Phi (x, r + t + \sigma \delta [1 - e^{-\sigma_0 t}]) + \delta e^{-\sigma_0 t}, 1 \},
\]

\[
W^- (x, t) = \max \{ \Phi (x, r + t - \sigma \delta [1 - e^{-\sigma_0 t}]) - \delta e^{-\sigma_0 t}, 0 \}
\]

are a pair of supersolutions and subsolutions of (1.1) on \( \mathbb{R} \times [0, +\infty) \).

Proof. We only prove that (5.7)

\[
\lim_{(u,v,r,s,\varpi) \to (0+,S(0),0+,S(0),0)} [\partial_1 g (u, v) + \varpi e^{\varpi r} \partial_2 g (r, s) + \varrho] = \partial_1 g (0, S(0)) + S' (0) \partial_2 g (0, S(0)) < 0
\]

and

\[
\lim_{(u,v,r,s,\varpi) \to (-S(1),1-,S(1),1-,S'(1))} [\partial_1 g (u, v) + \varpi e^{\varpi r} \partial_2 g (r, s) + \varrho] = \partial_1 g (1, S(1)) + S' (1) \partial_2 g (1, S(1)) < 0,
\]

we can fix \( \varrho_0 > 0 \) and \( \delta_1 > 0 \) such that

\[
(5.4) \quad \partial_1 g (u, v) + \varpi e^{\varpi r} \partial_2 g (r, s) < -\varrho_0
\]

for any

\[
(u, v, r, s, \varpi) \in [0, \delta_1] \times [S(0), S(0) + \delta_1] \times [0, \delta_1] \times [S(0), S(0) + \delta_1] \times [S'(0) - \delta_1, S'(0) + \delta_1]
\]

and

\[
(u, v, r, s, \varpi) \in [1 - \delta_1, 1] \times [S(1) - \delta_1, S(1)] \times [1 - \delta_1, 1] \times [S(1) - \delta_1, S(1)] \times [S'(1) - \delta_1, S'(1) + \delta_1].
\]

Let \( \delta_0 \in (0, \delta_1) \) satisfy

\[
(5.5) \quad \delta_0 e^{\varpi r} \left[ 1 + \max_{u \in [0,1]} |S'(u)| + \max_{u \in [0,1]} |S''(u)| \right] \leq \delta_1 / 4.
\]

Since \( \lim_{t \to -\infty} \left| \Phi (\cdot, t) - 1 \right|_{L^\infty (\mathbb{R})} = 0 \), \( \lim_{t \to -\infty} \left\| (h * S (\Phi)) (\cdot, t) - S (1) \right\|_{L^\infty (\mathbb{R})} = 0 \) and \( \lim_{t \to -\infty} \left\| (h * S' (\Phi)) (\cdot, t) - S' (1) \right\|_{L^\infty (\mathbb{R})} = 0 \), there exists \( T_4 > 0 \) such that for \( (x, t) \in \mathbb{R} \times (T_4, \infty) \),

\[
(5.6) \quad \Phi (x, t) \in [1 - \delta_1, 1], \quad (h * S (\Phi)) (x, t) \in [S(1) - \delta_1, S(1)],
\]

\[
(5.7) \quad (h * S' (\Phi)) (x, t) \in [S'(1) - \delta_1 / 2, S'(1) + \delta_1 / 2].
\]

Since \( \lim_{t \to -\infty} (h * \phi) (\xi) = 0 \), \( \lim_{t \to -\infty} (h * S (\phi)) (\xi) = 0 \), \( \lim_{t \to -\infty} (h * S' (\phi)) (\xi) = S'(0) \), \( \lim_{t \to +\infty} (h * S (\phi)) (\xi) = S (1) \) and \( \lim_{t \to +\infty} (h * S' (\phi)) (\xi) = S' (1) \), there exists \( X_1 \) such that for \( \xi \geq X_1 \),

\[
(5.8) \quad \phi (\xi) \in [1 - \delta_1, 1], \quad (h * S (\phi)) (\xi) \in [S(1) - \delta_1, S(1)],
\]

\[
(5.9) \quad (h * S' (\phi)) (\xi) = [S'(1) - \delta_1 / 2, S'(1) + \delta_1 / 2].
\]
and for $\xi \leq -X_1$,

\begin{align}
(5.10) \quad & \phi (\xi) \in [0, \delta_1 / 4], \quad (h * S (\phi)) (\xi) \in [S(0), S(0) + \delta_1 / 2], \\
(5.11) \quad & (h * S' (\phi)) (\xi) = [S'(0) - \delta_1 / 2, S'(0) + \delta_1 / 2], \\
(5.12) \quad & (h * \phi) (\xi) \max_{u \in [0,1]} |S'' (u)| \in (0, \delta_1 / 8).
\end{align}

Since $p(t) - ct - \omega \to 0$ as $t \to -\infty$, there exists $T_5 \leq T$, where $T$ is defined in Lemma 4.11 such that for $t \leq T_5$,

\begin{equation}
(5.13) \quad 2 \left[ p(t) - ct - \omega \right] \max_{u \in [0,1]} |S'' (u)| \cdot \max_{u \in [0,1]} \phi' (u) \in (0, \delta_1 / 8).
\end{equation}

Let $\kappa_1 = \min_{\xi \in [-X_1, X_1]} \phi' (\xi) > 0$; then there exists a large $\sigma_1 > 0$ such that

\begin{equation}
(5.14) \quad \frac{1}{2} c \sigma_1 g_0 \kappa_1 - g_0 - 2 \max_{u \in [0,1], v \in [S(0), S(1)]} |g(u, v)| \geq 0.
\end{equation}

Let $\Psi(x, t) = \phi(x + ct + \omega) + \phi(-x + ct + \omega)$. It is easy to prove that

$$\lim_{t \to -\infty} \|\Phi - \Psi\|_{C^0(\mathbb{R} \times (-\infty, t))} = 0.$$  

By interpolation $\|\cdot\|_{C^1} \leq 2 \sqrt{\|\cdot\|_{C^0} \cdot \|\cdot\|_{C^2}}$; we have $\lim_{t \to -\infty} \|\Phi - \Psi\|_{C^1(\mathbb{R} \times (-\infty, t))} = 0$. Thus, there exists $T_6 \leq T_5$ such that for any $t \leq T_6$,

\begin{equation}
(5.15) \quad \|\Phi - \Psi\|_{C^1(\mathbb{R} \times (-\infty, t))} \leq \frac{1}{2} c \kappa_1.
\end{equation}

Since for each $t \in [T_6, T_4]$, $\lim_{|x| \to +\infty} \Phi(x, t) = 1$, $\lim_{|x| \to +\infty} (h * S(\Phi)) (x, t) = S'(1)$ and $\lim_{|x| \to +\infty} (h * S'(\Phi)) (x, t) = S'(1)$, then there exists a large positive number $X_2$ such that for any $|x| > X_2$ and $t \in [T_6, T_4]$, (5.6) and (5.7) hold.

Let $\kappa_2 = \min_{|x| \leq X_2, t \in [T_6, T_4]} \frac{\partial \Phi(x, t)}{\partial t}$. Take $\sigma_2 > 0$ such that

\begin{equation}
(5.16) \quad \sigma_2 g_0 \kappa_2 - g_0 - 2 \max_{u \in [0,1], v \in [S(0), S(1)]} |g(u, v)| \geq 0.
\end{equation}

Now define

\begin{align*}
A^+_2 &= \{(x, t) : \Phi(x, r + t + \sigma \delta [1 - e^{-\frac{\sigma \delta}{2} t}] + \delta e^{-\frac{\sigma \delta}{2} t} > 1, (x, t) \in \mathbb{R} \times [0, +\infty)\}, \\
A^-_2 &= \{(x, t) : \Phi(x, r + t + \sigma \delta [1 - e^{-\frac{\sigma \delta}{2} t}] + \delta e^{-\frac{\sigma \delta}{2} t} < 1, (x, t) \in \mathbb{R} \times [0, +\infty)\}.
\end{align*}

If $(x, t) \in A^+_2$, then

$$\mathcal{N}[W^+] := \frac{\partial W^+}{\partial t} - d \Delta W^+ - g(W^+(x, t), (h * S(W^+))(x, t)) \geq -g(1, S(1)) = 0.$$
If \((x, t) \in A_2^n\), let \(\xi(t) = r + t + \sigma\delta [1 - e^{-\omega t}]\); we have \(W^+(x, t) = \Phi(x, \xi(t)) + \delta e^{-\omega t}\). Then

\[
\mathcal{N} [W^+] = \delta e^{-\omega t} [g_0 \sigma \Phi_2(x, \xi(t)) - g_0] - g \left(W^+(x, t), (h * S(W^+))(x, t)\right) + g \left(\Phi(x, \xi(t)), (h * S(\Phi))(x, \xi(t))\right)
+ \delta g_{\Phi_2}(x, \xi(t)) + \theta \delta e^{-\omega t}, \xi(t) \right) \delta e^{-\omega t}
+ \partial_{2} g \left(\Phi(x, \xi(t)) + \theta \delta e^{-\omega t}, \xi(t) \right)
\times \int_{0}^{\tau} \int_{-\infty}^{\infty} h(y, s) S' \left(\Phi(x - y, \xi(t) - s) + \theta \eta(y, s)\right) \eta(y, s) dy ds \, d\theta
\geq \delta e^{-\omega t} \left(\Phi(x, \xi(t)) - g_0 - \int_{0}^{\tau} \partial_{1} g \left(\Phi(x, \xi(t)) + \theta \delta e^{-\omega t}, \xi(t) \right) \delta e^{-\omega t}
+ \theta \eta(y, s)\right) \delta e^{-\omega t} e^{\omega t} dy ds \, d\theta
\geq \delta e^{-\omega t} \left(\Phi(x, \xi(t)) - g_0 - \int_{0}^{\tau} \partial_{1} g \left(\Phi(x, \xi(t)) + \theta \delta e^{-\omega t}, \xi(t) \right)
+ \theta \eta(y, s)\right) \delta e^{-\omega t} e^{\omega t} dy ds \, d\theta
\times \left(h * S' (\Phi)) (x, \xi(t)) + \delta e^{\omega t} \max_{u \in [0, 1]} |S''(u)|\right) \, d\theta,
\]
where

\[
\Phi_2(x, t) = \frac{\partial}{\partial t} \Phi(x, t), \xi(t)
= \int_{0}^{\tau} \int_{-\infty}^{\infty} h(y, s) S \left(\Phi(x - y, \xi(t) - s) + \theta \eta(y, s)\right) dy ds
\]
and

\[
\eta(y, s) = W^+(x - y, t - s) - \Phi(x - y, \xi(t) - s)
\leq \Phi(x - y, \xi(t) - s) - \Phi(x - y, \xi(t) - s)
\leq \Phi(x - y, \xi(t) - s) + \sigma \delta e^{-\omega(t-s)} - \Phi(x - y, \xi(t) - s)
\leq \Phi(x - y, \xi(t) - s) + \sigma \delta e^{-\omega(t-s)} - \Phi(x - y, \xi(t) - s)
\leq \delta e^{-\omega(t-s)} \leq \delta e^{-\omega t} e^{\omega t} \leq \delta e^{\omega t}.
\]

Let \(\sigma_0 = \max \{\sigma_1, \sigma_2\}\). Now we consider six cases.

Case (i). \(x \in \mathbb{R}, \xi(t) > T_4\). By (5.4), (5.5), (5.6) and (5.7), we have \(\mathcal{N} [W^+] \geq 0\).

Case (ii). \(\xi(t) \leq T_6, |x| + c_\delta(t) + \omega \geq X_1\). Since for \(x > 0\),

\[
\Phi(x, \xi(t)) \geq \phi(x + c_\delta(t) + \omega), \quad \Phi(x - y, \xi(t) - s) \geq \phi(x - y + c_\delta(t) - cs + \omega),
\]

\[
\Phi(x - y, \xi(t) - s) \leq \phi(x - y + p_0(\xi(t) - s)) + \phi(-x + y + p_0(\xi(t) - s))
\]

then

\[
S' (\Phi(x - y, \xi(t) - s)) \leq S' (\phi(x - y + \xi(t) - s + \omega)) + \phi(-x + y + c_\delta(t) - cs + \omega) \max_{u \in [0, 1]} |S''(u)| + 2 [p(\xi(t)) - c_\delta(t) - \omega] \max_{u \in [0, 1]} |S''(u)| \cdot \max_{v \in \mathbb{R}} |v|^2.
\]
Theorem 5.8. Assume that $h(x, t) = J(x)\delta(t - \tau)$; then for some $(x_0, t_0) \in \mathbb{R}^2$, 
\[ \Phi(x, t) = \Phi(x + x_0, t + t_0) \] for any $(x, t) \in \mathbb{R}^2$.

Proof. Fix an arbitrary $t_0 \in \mathbb{R}$. Define 
\[ \eta := \inf_{z \in \mathbb{R}, r \in \mathbb{R}} \left\| \Phi(\cdot, r + \cdot) - \Phi(\cdot + z, t_0 + \cdot) \right\|_{L^\infty(\mathbb{R} \times [-\tau, 0])}. \]

Fix any small $\delta \in (0, \delta_0)$. By Lemma 5.6 there exist $t_1 < t_0$, $z \in \mathbb{R}$ and $r \in \mathbb{R}$ such that 
\[ \left\| \Phi(\cdot, r + \cdot) - \Phi(\cdot + z, t_1 + \cdot) \right\|_{L^\infty(\mathbb{R} \times [-\tau, 0])} = \delta. \]

That is, $\Phi(x, r + s) - \delta \leq u(z + x, t_1 + s) \leq \Phi(x, r + s) + \delta$ for any $x \in \mathbb{R}$ and $s \in [-\tau, 0]$. Furthermore, 
\begin{align*}
\max \left\{ \Phi(x, r + s\delta[1 - e^{\delta \rho \tau}] + s - \sigma \delta[1 - e^{-\delta \rho \tau}] - \delta e^{-\delta \rho \tau}, 0) \right\} \\
\leq \Phi(z + x, t_1 + s) \leq \min \left\{ \Phi(x, r - s\delta[1 - e^{\delta \rho \tau}] + s + \sigma \delta[1 - e^{-\delta \rho \tau}] + \delta e^{-\delta \rho \tau}, 1) \right\}.
\end{align*}

By comparison, for all $t \geq 0$, 
\begin{align*}
\max \left\{ \Phi(x, r + s\delta[1 - e^{\delta \rho \tau}] + t - \sigma \delta[1 - e^{-\delta \rho \tau}] - \delta e^{-\delta \rho \tau}, 0) \right\} \\
\leq \Phi(z + x, t_1 + t) \leq \min \left\{ \Phi(x, r - s\delta[1 - e^{\delta \rho \tau}] + t + \sigma \delta[1 - e^{-\delta \rho \tau}] + \delta e^{-\delta \rho \tau}, 1) \right\}.
\end{align*}

Set $t = t_0 - t_1$ and $r' = r + s\delta[1 - e^{\delta \rho \tau}] - \sigma \delta[1 - e^{-\delta \rho \tau}]$. We then have 
\[ \left| \Phi(z + x, t_0) - \Phi(x, t_0') \right| \leq 2\delta + \left| \Phi(x, r') + (1 + e^{\delta \rho \tau}) \sigma \delta \right| \Phi(x, r') \]
\[ \leq \left( 2 + (1 + e^{\delta \rho \tau}) \sigma \right) \left\| \frac{\partial \Phi}{\partial t} \right\|_{L^\infty} \delta. \]

Thus, $\eta \leq (2 + (1 + e^{\delta \rho \tau}) \sigma \left\| \frac{\partial \Phi}{\partial t} \right\|_{L^\infty}) \delta$. Since $\delta$ is arbitrary, $\eta = 0$. Consequently, $\Phi$ is a translation of $\Phi$. This completes the proof. \qed

Remark 5.9. We note that the assumption $h(x, t) = J(x)\delta(t - \tau)$ is only used to ensure that (5.2) holds. Obviously, if $h(x, t)$ satisfies that there exists $t_0 \in (0, \tau)$ such that $\int_{t_0}^t \int_{-\infty}^{\infty} h(x, t) dx dt = 1$, that is, $\int_{t_0}^t \int_{-\infty}^{\infty} h(x, t) dx dt = 0$, we can show that (5.2) holds via a similar argument to that of Lemma 5.5. Thus, the conclusions
of Lemma 5.6 and Theorem 5.8 are still valid if \( h(x, t) \) satisfies that there exists \( \tau_0 \in (0, \tau) \) such that \( \int_{\tau_0}^{\tau} \int_{-\infty}^{\infty} h(x, t) dx dt = 1 \). However, it seems difficult to show that (5.2) holds for a general kernel \( h(x, t) \). We also note that the assertions of Lemmas 5.1 [5.4] and 5.7 hold for a general kernel \( h(x, t) \) satisfying (H1)-(H3).

**Theorem 5.10.** The entire solution \( \Phi \) of (1.1) founded in Theorem 1.1 is Liapunov stable.

**Proof.** Given any \( \epsilon > 0 \), for any \( \varphi \in C_{[0,1]} \) with \( \| \varphi - \Phi(x_0 + \cdot, t_0 + \cdot) \|_{L^\infty([R \times [-\tau, 0])} < \delta \leq \delta_0 \), where \( x_0 \in \mathbb{R} \) and \( t_0 \in \mathbb{R} \) are arbitrary constants, we have

\[
\max \left\{ \Phi(x + x_0, s + t_0 + \sigma_0 \delta (1 - e^{\varphi_0 s}) - \sigma_0 \delta (1 - e^{-\varphi_0 s}), 0) \right\}
\leq \varphi(x, s) \leq \min \left\{ \Phi(x + x_0, s + t_0 - \sigma_0 \delta (1 - e^{\varphi_0 s} + \sigma_0 \delta (1 - e^{-\varphi_0 s})), 1) \right\}
\]

for all \( x \in \mathbb{R} \) and \( s \in [-\tau, 0] \), where \( \varphi_0, \sigma_0 \) and \( \delta_0 \) are as in Lemma 5.7. By Lemma 5.1 it follows that

\[
\max \left\{ \Phi(x + x_0, t + t_0 + \sigma_0 \delta (1 - e^{\varphi_0 t}) - \sigma_0 \delta (1 - e^{-\varphi_0 t}), 0) \right\}
\leq u(x, t; \varphi) \leq \min \left\{ \Phi(x + x_0, t + t_0 - \sigma_0 \delta (1 - e^{\varphi_0 t}), 0) + \sigma_0 \delta (1 - e^{-\varphi_0 t}), 1 \right\}
\]

for all \( x \in \mathbb{R} \) and \( t > 0 \). Choose \( \delta_2(\epsilon) > 0 \) such that \( \| \Phi(\cdot, t) - \Phi(\cdot, t + z) \|_{L^\infty(R)} < \epsilon / 2 \) for any \( |z| \leq \delta_2 \) and \( t \in \mathbb{R} \). Furthermore, let \( \delta^* = \min \left\{ \epsilon / 2, \frac{\delta_2 e^{-\varphi_0 \sigma_0 \delta}}{\sigma_0}, \delta_0 \right\} \).

Then for any \( \delta < \delta^* \),

\[
|\sigma_0 \delta (1 - e^{\varphi_0 t}) - \sigma_0 \delta (1 - e^{-\varphi_0 t})| \leq |\sigma_0 \delta (e^{\varphi_0 t} - e^{-\varphi_0 t})| \leq \sigma_0 \epsilon e^{\sigma_0 \delta} \leq \delta_2.
\]

It follows that

\[
\Phi(x + x_0, t + t_0) - \epsilon \leq u(x, t; \varphi) \leq \Phi(x + x_0, t + t_0) + \epsilon \quad \forall x \in \mathbb{R}, \ t \geq 0.
\]

That is, for any \( \varphi \in C_{[0,1]} \) with \( \| \varphi - \Phi(\cdot + x_0, \cdot + t_0) \|_{L^\infty([R \times [-\tau, 0])} < \delta^* \), we have

\[
|u(x, t; \varphi) - \Phi(x + x_0, t + t_0)| \leq \epsilon
\]

for all \( x \in \mathbb{R} \) and \( t \geq 0 \), which implies that \( \Phi(x, t) \) is Liapunov stable. \( \square \)

**Remark 5.11.** To prove Theorem 1.1 we only need to let

\[
\hat{\Phi}(x, t) = \Phi\left(x + (\theta_1 - \theta_2)/2, t + (\theta_1 + \theta_2 - 2\omega)/(2c)\right)
\]

and still denote \( \hat{\Phi}(x, t) \) by \( \Phi(x, t) \).

**Remark 5.12.** Consider the case \( c < 0 \). Assume that \( \phi(x + ct) \) is an increasing traveling wave solution up to translation of \( \hat{\Phi} \) satisfying \( \phi(-\infty) = 0 \) and \( \phi(+\infty) = 1 \). Let \( \psi(x - ct) = \phi(x - (c - ct)). \) Then \( \psi(-\infty) = 1 \) and \( \psi(+\infty) = 0 \). Let \( c' = -c > 0 \) and \( \chi(x + c't) = 1 - \psi(x + c't) = 1 - \psi(x - ct) \). Thus, \( \chi(-\infty) = 0 \) and \( \chi(+\infty) = 1 \). We conclude that \( \chi(x + c't) \) is a traveling wave solution of the following equation:

\[
(5.17) \quad \frac{\partial u}{\partial t} = d \Delta u - g\left(1 - u(x, t), (h \ast S)(1 - u)(x, t)\right).
\]

Take \( g^*(u, v) = -g(1 - u, -v) \) and \( S^*(u) = -S(1 - u) \). Obviously, \( g^* \) and \( S^* \) satisfy the conditions (F1) and (F2). Then equation (5.17) reduces to

\[
(5.18) \quad \frac{\partial u}{\partial t} = d \Delta u + g^*(u, (h \ast S^*)(u))(x, t).
\]

Applying Theorem 1.1 to (5.18), we can prove Theorem 1.2.
References


School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China
E-mail address: wangzhch@lzu.edu.cn

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China
E-mail address: wtli@lzu.edu.cn

Department of Mathematics, University of Miami, P.O. Box 249085, Coral Gables, Florida 33124-4250
E-mail address: ruan@math.miami.edu