
The Mathematics of the RSA Public-Key Cryptosystem 
Burt Kaliski 

RSA Laboratories 
 

 
ABOUT THE AUTHOR:  Dr Burt Kaliski is a computer scientist whose involvement 
with the security industry has been through the company that Ronald Rivest, Adi Shamir 
and Leonard Adleman started in 1982 to commercialize the RSA encryption algorithm 
that they had invented.  At the time, Kaliski had just started his undergraduate degree at 
MIT.  Professor Rivest was the advisor of his bachelor’s, master’s and doctoral theses, all 
of which were about cryptography.  When Kaliski finished his graduate work, Rivest 
asked him to consider joining the company, then called RSA Data Security.  In 1989, he 
became employed as the company’s first full-time scientist.  He is currently chief 
scientist at RSA Laboratories and vice president of research for RSA Security. 
 

Introduction 
 
Number theory may be one of the “purest” branches of mathematics, but it has turned out 
to be one of the most useful when it comes to computer security.  For instance, number 
theory helps to protect sensitive data such as credit card numbers when you shop online.  
This is the result of some remarkable mathematics research from the 1970s that is now 
being applied worldwide. 
 
Sensitive data exchanged between a user and a Web site needs to be encrypted to prevent 
it from being disclosed to or modified by unauthorized parties.  The encryption must be 
done in such a way that decryption is only possible with knowledge of a secret decryption 
key.  The decryption key should only be known by authorized parties. 
 
In traditional cryptography, such as was available prior to the 1970s, the encryption and 
decryption operations are performed with the same key.  This means that the party 
encrypting the data and the party decrypting it need to share the same decryption key.  
Establishing a shared key between the parties is an interesting challenge.  If two parties 
already share a secret key, they could easily distribute new keys to each other by 
encrypting them with prior keys.  But if they don’t already share a secret key, how do 
they establish the first one? 
 
This challenge is relevant to the protection of sensitive data on the Web and many other 
applications like it.  Your computer doesn’t initially share any secret keys with Web sites.  
How then do you encrypt data you are sending to the site?  You might eventually set up a 
password, and the password could then be used to derive an encryption key.  But how do 
you protect the password from interception when you’re first setting it up? 
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This line of thinking – in pre-Web terminology – prompted two Stanford University 
researchers, Whitfield Diffie and Martin Hellman, to write a landmark paper, “New 
Directions in Cryptography,” in 1976. The paper suggested that perhaps encryption and 
decryption could be done with a pair of different keys rather than with the same key.  The 
decryption key would still have to be kept secret, but the encryption key could be made 
public without compromising the security of the decryption key.  This concept was called 
public-key cryptography because of the fact that the encryption key could be made 
known to anyone. 
 
Diffie and Hellman’s approach immediately answered the setup problems for protecting 
online data.  To enable computers to encrypt data for a site, the site simply needs to 
publish its encryption key, for instance in a directory.  Every computer can use that 
encryption key to protect data sent to the site.  But only the site has the corresponding 
decryption key, so only it can decrypt the data. 
 
Diffie and Hellman also introduced the concept of digital signatures.  Parties who share a 
secret key can easily verify that data they exchange has not been modified by performing 
an authentication operation using the key.  But what if they don’t share a key?   
 
For this problem, Diffie and Hellman suggested another application of public-key 
cryptography, but with the order of encryption and decryption reversed.  To protect the 
data it sends from modification, a site would first “decrypt” the data with its private 
decryption key.  The computer receiving the result would “encrypt” it with the 
corresponding encryption key, and thereby recover and verify the data.  
 
The result is called a digital signature because it has similar properties to handwritten 
signatures:  Any computer can verify the signature, but only the originating site can 
generate it.  In fact the assurances are stronger than for ordinary signatures, because the 
signature is dependent on the data itself, unlike ordinary signatures which can potentially 
be cut-and-pasted among different documents and yet still appear to be valid. 
 
Digital signatures help with the next question in public-key cryptography:  If a site 
publishes its encryption key in a directory, how do I know that the data in the directory is 
authentic?  Answer:  The directory digitally signs the data with its private key.  All the 
computer needs to have in advance is the directory’s public key for verifying the 
directory’s signature.  (This concept is implemented today in digital certificates.) The 
computer can then verify the encryption key for any site. 
 
Diffie and Hellman didn’t identify a method with the full public-key 
encryption/decryption properties that would also enable digital signatures.  However, 
they did introduce a specific method based on number theory for establishing secret keys 
by parties who don’t previously share a secret.  The method, called Diffie-Hellman key 
agreement, is still in use today.  The security of the method is related to a longstanding 
problem in number theory, discrete logarithms.  The full public-key method would come 
a year later as an application of another famous problem, integer factorization. 
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Prime Generation and Integer Factorization 
Two basic facts and one conjecture in number theory prepare the way for today’s RSA 
public-key cryptosystem. 
 
FACT 1.  Prime generation is easy:  It’s easy to find a random prime number of a given 
size. 
 
This is a result of two other points:  Prime numbers of any size are very common, and it’s 
easy to test whether a number is a prime – even a large prime.  
 
To generate a random prime, one can simply generate random numbers of a given size 
and test them for primality until a prime is found.  According to the Prime Number 
Theorem, the expected number of candidates to test will be on the order of ln x (the 
natural logarithm of x) where x is a typical number of the intended size. 
 
It hasn’t always been easy to test whether a number is a prime.  In fact, it might seem that 
testing for primality would require one to determine all the factors of the number to see if 
there are others beside the number itself and 1.  Faster methods for primality testing were 
discovered in the 1970s that test for certain properties held by prime numbers but not by 
composites, rather than finding the factors.  Without these results, much of public-key 
cryptography today would not be practical because of the dependence on efficient 
methods of generating primes. 
 
In the following, let p and q be two large, randomly generated primes.  “Large” in the 
cryptographic context typically means 512 bits (155 decimal digits) or more. 
 
FACT 2.  Multiplication is easy:  Given p and q, it’s easy to find their product, n = pq. 
 
There are many efficient ways to multiply two large numbers, starting with the “grade-
school” method that multiplies one number by the other digit-by-digit, and sums the 
tableau of intermediate results. 
 
CONJECTURE 3.  Factoring is hard:  Given such an n, it appears to be quite hard to 
recover the prime factors p and q. 
 
Despite hundreds of years of study of the problem, finding the factors of a large number 
still takes a long time in general.  The fastest current methods are much faster than the 
simple approach of trying all possible factors one at a time. (Such a method would take 
on the order of n steps.)  However, they are still expensive.  For instance, it has been 
estimated recently that recovering the prime factors of a 1024-bit number would take a 
year on a machine costing US $10 million.  A 2048-bit number would require several 
billion times more work.   
 
These estimates are much less than would have been expected in the 1970s when the 
problem was first proposed in cryptography.  The recommended sizes have accordingly 
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increased over the years, due to the discovery of faster factoring methods as well as 
steady advances in computing power.   
 
No one knows whether still faster methods might be discovered in the coming years.  On 
the other hand, no one has proved that they can’t be.  Both aspects remain important 
research areas in mathematics. 

Modular Exponentiation and Roots 
Given this background, n will hereafter denote the product of two large, randomly 
generated primes.  Let m and c be integers between 0 and n-1, and let e be an odd integer 
between 3 and n-1 that is relatively prime to p-1 and q-1. 
 
The encryption and decryption operations in the RSA public-key cryptosystem are based 
on two more facts and one more conjecture: 
 
FACT 4.  Modular exponentiation is easy:  Given n, m, and e, it’s easy to compute c = 
me mod n.   
 
The value me mod n is formally the result of multiplying e copies of m, dividing by n, and 
keeping the remainder.  This may seem to be an expensive computation, involving e-1 
multiplications by m with increasingly large intermediate results, followed by a division 
by n.  However, two optimizations make the operation easy:   
 

1. Multiplying by an appropriate sequence of previous intermediate values, rather 
than only by m, can reduce the number of multiplications to no more than twice 
the size of e in binary. 

2. Dividing and taking the remainder after each multiplication keeps the 
intermediate results the same size as n. 

 
FACT 5.  Modular root extraction – the reverse of modular exponentiation – is easy 
given the prime factors:  Given n, e, c, and the prime factors p and q, it’s easy to 
recover the value m such that c = me mod n.  
 
The value m can be recovered from c by a modular exponentiation operation with another 
odd integer d between 3 and n-1.  In particular, for this d, the following holds for all m: 
 

m = (me)d mod n .   
 
This integer d is easy to compute given e, p, and q; see below for details. 
 
CONJECTURE 6.  Modular root extraction is otherwise hard:  Given only n, e, and c, 
but not the prime factors, it appears to be quite hard to recover the value m. 
 
The fastest general method currently available for computing modular roots under the 
conditions on n and e above is to factor n and apply FACT 5 to determine d.  Actually, any 
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method that determines the value d can be turned into a method for factoring n.  It’s 
possible that there may be methods that compute modular roots without factoring n or 
determining d.  But so far no general methods have been found for doing so that are faster 
than factoring n. 
 
[Note:  In some cases, it is easy to compute modular roots without knowledge of the 
prime factors.  For instance, if m is known to be very small, such that c = me < n, then m 
can be recovered from c by taking eth roots over the integers, which is easy.  However, 
these cases are very rare in practice for typical constructions of the plaintext m.  A 
general root-extraction method must be able to compute modular roots for many 
plaintexts, not just a few.] 

The RSA Cryptosystem 
The various observations just stated form the basis for the RSA public-key cryptosystem, 
which was invented at MIT in 1977 by Ronald Rivest, Adi Shamir and Leonard 
Adleman.  
 
The public key in this cryptosystem consists of the value n, which is called the modulus, 
and the value e, which is called the public exponent.  The private key consists of the 
modulus n and the value d, which is called the private exponent. 
 
An RSA public-key / private-key pair can be generated by the following steps: 
 

1. Generate a pair of large, random primes p and q. 
2. Compute the modulus n as n = pq. 
3. Select an odd public exponent e between 3 and n-1 that is relatively prime to p-1 

and q-1. 
4. Compute the private exponent d from e, p and q.  (See below.) 
5. Output (n, e) as the public key and (n, d) as the private key. 

 
The encryption operation in the RSA cryptosystem is exponentiation to the eth power 
modulo n: 
 

c = ENCRYPT (m) = me mod n  . 
 
The input m is the message; the output c is the resulting ciphertext.  In practice, the 
message m is typically some kind of appropriately formatted key to be shared.  The actual 
message is encrypted with the shared key using a traditional encryption algorithm.  This 
construction makes it possible to encrypt a message of any length with only one 
exponentiation. 
 
The decryption operation is exponentiation to the dth power modulo n: 
 

m = DECRYPT (c) = cd mod n  . 
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The relationship between the exponents e and d ensures that encryption and decryption 
are inverses, so that the decryption operation recovers the original message m.  Without 
the private key (n, d) (or equivalently the prime factors p and q), it’s difficult (by 
CONJECTURE 6) to recover m from c.  Consequently, n and e can be made public without 
compromising security, which is the basic requirement for a public-key cryptosystem. 
 
The fact that the encryption and decryption operations are inverses and operate on the 
same set of inputs also means that the operations can be employed in reverse order to 
obtain a digital signature scheme following Diffie and Hellman’s model.  A message can 
be digitally signed by applying the decryption operation to it, i.e., by exponentiating it to 
the dth power: 
 

s = SIGN (m) = md mod n  . 
 
The digital signature can then be verified by applying the encryption operation to it and 
comparing the result with and/or recovering the message: 
 

m = VERIFY (s) = se mod n  . 
 
In practice, the plaintext m is generally some function of the message, for instance a 
formatted one-way hash of the message.  This makes it possible to sign a message of any 
length with only one exponentiation. 
 
Figure 1 gives a small example showing the encryption of values m from 0 to 9 as well as 
decryptions of the resulting ciphertexts.  The exponentiation is optimized as suggested 
above.  To compute m3 mod n, one first computes m2 mod n with one modular squaring, 
then m3 mod n with a modular multiplication by m.  The decryption is done similarly:  
One first computes c2 mod n, then c3 mod n, c6 mod n, and c7 mod n by alternating 
modular squaring and modular multiplication. 
 
Key Pair 
  Public key:  n = 55, e = 3 
  Private key:  n = 55, d = 7 

Key Pair Generation 
  Primes:  p = 5, q = 11 
  Modulus:  n = pq = 55 
  Public exponent:  e = 3 
  Private exponent:  d = 3-1 mod 20 = 7 

Message Encryption 
c = m3 mod n 

Decryption 
m = c7 mod n 

m m2 mod n m3 mod n c2 mod n c3 mod n c6 mod n c7 mod n 
0 0 0 0 0 0 0 
1 1 1 1 1 1 1 
2 4 8 9 17 14 2 
3 9 27 14 48 49 3 
4 16 9 26 14 31 4 
5 25 15 5 20 15 5 
6 36 51 16 46 26 6 
7 49 13 4 52 9 7 
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8 9 17 14 18 49 8 
9 26 14 31 49 36 9 

 
Figure 1:  Small example of the RSA public-key cryptosystem. 

From Theory to Practice 
It has been a long road from Diffie and Hellman’s discovery of public-key cryptography 
in 1976 and the invention of the RSA public-key cryptosystem in 1977, to the widespread 
deployment of public-key cryptography we see today. 
 
Public-key cryptography finds its strongest application when parties who have no prior 
relationship (and therefore no opportunity to establish shared secret keys) want to 
exchange sensitive data with each other.  Throughout the 1980s, however, most of the 
applications that needed to protect data had centralized control.  Banking networks and 
pay-TV systems are typical examples where secret keys could generally be pre-
established by a central authority.  Applications that didn’t have centralized control – like 
e-mail – were meanwhile growing without much attention to security.  Equally important 
was the fact that the mathematical operations in public-key cryptography required 
considerable computational resources relative to computer performance at the time.  As a 
result, public-key cryptography was a slow sell through that first full decade.   
 
(This was probably a good thing, because cryptographers were still learning what it 
would mean for a public-key cryptosystem to be “secure,” and many of the initial 
proposals for applying the RSA algorithm would later turn out not to be.) 
 
With the advent of the World Wide Web in the 1990s, however, the situation changed.  
Computer performance had by then advanced to the point that the time for the encryption 
and decryption operations was no longer an issue.  Meanwhile, the “killer application” of 
online purchasing had exactly the characteristics that required public-key cryptography.  
The Web inherently didn’t have central control for security:  Any merchant could go 
online without any prior security relationships with anyone else.  And there was clearly a 
need to protect sensitive data:  Many consumers would not shop online if there were a 
risk that credit card numbers and order information might be intercepted by an 
eavesdropper.  Public-key cryptography caught on rapidly as a result. 
 
I’ve had the privilege to observe the emergence of public-key cryptography in the 
industry as a scientist at RSA Laboratories, the research center of RSA Security.  RSA 
Laboratories was founded in 1991 to support the start-up company RSA Data Security 
with research and industry standards development in cryptography.  RSA Data Security 
was acquired by Security Dynamics in 1996, and the parent company changed its name to 
RSA Security in 1999.  The team of eight researchers I now work with at RSA 
Laboratories supports the combined RSA Security with research and standards activities 
in user authentication as well. 
 
Our research on the RSA algorithm brings a significant amount of mathematics to bear.  
For instance, we have needed to understand how best to use the algorithm to establish 
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keys and sign messages.  This requires a careful analysis of various methods for relating 
of the value m to the actual message or key, some of which are much better for security 
than others.  We have needed to understand the impact of various proposed 
improvements to integer factorization methods, especially in terms of recommended key 
sizes.  This requires assessment of the effectiveness of those methods. 
 
Because of the widespread deployment of the RSA algorithm, many other researchers are 
looking at these same problems today.  We benefit significantly from their work as we 
look to improve our own products and provide guidance to our customers.  Our work in 
industry standards aims to promote the adoption of the best practices we have learned. 

The Work Has Just Begun 
Simple concepts in mathematics – prime numbers, integer factorization, modular 
exponentiation – have had a dramatic impact on computer security, particularly for online 
commerce.  The theory is working well in practice through algorithms like Diffie-
Hellman key agreement, the RSA public-key cryptosystem and more recently elliptic 
curve cryptography.   
 
In cryptography, “it’s not broken” is no reason to avoid trying to fix it.  Mathematicians 
still don’t know whether or not there are faster methods for integer factorization than the 
ones currently available.  Research is needed to try to find faster methods, as well to try 
to prove that there aren’t any.   A related research problem is to confirm whether modular 
root-extraction is or isn’t as hard as integer factorization. 
 
Interestingly, much faster methods for integer factorization already exist in theory, but 
they run on computers that haven’t yet been built.  In particular, if one could build a full-
scale quantum computer, it will be possible to break a large number into its factors 
essentially as easily as it is to put the number together by multiplication.  (Such a 
computer would also break the Diffie-Hellman and elliptic curve algorithms.) 
 
In case one or more of the current public-key cryptosystems is broken in the future, it 
would be helpful to have alternatives to choose from.  This is another important area for 
research.  What other hard problems in mathematics are there from which a public-key 
cryptosystem and digital signature scheme might be derived? 
 
Mathematics has many more applications in computer security than just public-key 
cryptography, of course.  The design and analysis of more traditional encryption 
algorithms and one-way function also has a strong mathematical component, although 
perhaps not one so elegant as for public-key cryptography.  Intriguing mathematical 
constructions have also led to new types of cryptography – like identity-based encryption, 
a form of public-key cryptography where one’s name or e-mail address itself becomes the 
public key, avoiding the need for a directory.  More groundbreaking applications are 
likely to emerge over time as knowledgeable people continue to search what’s concealed 
within mathematics.  Who knows what other useful things we might find by exploring an 
otherwise obscure formula? 
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Appendix:  Computing the Private Exponent 
Let n be the product of two distinct prime numbers p and q, and let e be the public 
exponent as defined above.  Let L = LCM (p-1, q-1) denote the least common multiple of 
p-1 and q-1.  The private exponent d for the RSA cryptosystem is any integer solution to 
the congruence  
 

de ≡ 1 mod L. 
 
The value d is the inverse of e modulo L.  The requirement that e be relatively prime to p-
1 and q-1 ensures that an inverse exists.  Modular inverses are easy to find with the 
Extended Euclidean Algorithm or similar methods.   
 
The RSA cryptosystem works because exponentiation to the dth power modulo n is the 
inverse of exponentiation to the eth

 power when the exponents d and e are inverses 
modulo L.  That is, for all m between 0 and n-1,  
 

m ≡ (me)d mod n  . 
 
The proof of this fact is left as an exercise to the reader.  Hint: Show that the result holds 
modulo p and q separately, i.e., that for all m, 
 

m ≡ (me)d mod p 
 
and 
 

m ≡ (me)d mod q  . 
 
The result will then follow via the Chinese Remainder Theorem. 
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